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Abstract— Autonomous inspection of large and complex
structures with a commercial unmanned aerial vehicle (UAV) is
a challenging problem that has been addressed in recent years.
In this paper, we address the global motion planning problem of
creating autonomous inspection missions for UAVs considering
photogrammetry constraints. We focus on the inspection of
large tailings dams, which are dam structures used to store
waste byproducts of mining. Our method uses a prior sparse
point cloud of the dam to generate a voxel grid, where paths
satisfying photogrammetry constraints are tested for collisions.
We then apply the A* algorithm as a local planner to avoid
obstacles within the global mission. Moreover, we address
the problem of changing routes online by using octree-based
multi-resolution grids for efficient and fast pathfinding. Our
results, obtained using tridimensional maps of an actual coal
mine tailings dam, show that using octrees for multi-resolution
motion planning is faster than using a fixed voxel grid in online
missions while inspecting large structures.

I. INTRODUCTION

In recent years, autonomous inspections using unmanned
aerial vehicles (UAVs) have become an efficient, fast, and
safe alternative to traditional inspection methods, especially
in complex and hazardous environments such as tailings
dams, underground mines, skyscrapers, bridges, and power
lines (see, for instance, [1], [2]). Several factors contribute
to the rapid increase of the number of drones in inspec-
tion tasks, including their high flexibility and their ability
to navigate challenging environments. In addition, UAVs
reduce operational costs and eliminate risks to human life,
making them essential for inspecting difficult-to-reach areas.
However, ensuring reliable and efficient motion planning
for UAVs in these practical scenarios remains a significant
challenge due to factors such as the quality of environmental
maps, uncertain obstacles, computational limitations, and the
requirement for online decision-making. This paper presents
an approach for performing offline and online motion plan-
ning for autonomous UAVs performing inspection missions
over large structures, with a focus on the inspection of
tailings dams, as shown in Fig. 1. Tailings dams are large
embankment dams that store waste byproducts of mining.
Frequent inspection is essential to prevent accidents [3].

In structured and well-known environments, voxel grids
are an alternative for representing 3D spaces and enabling
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Fig. 1: Integrated motion planning framework for au-
tonomous inspections of large structures using a commercial
UAV: Global planning defines the primary coverage path
( ) for surveying the field considering photogrammetry
constraints, while online motion planning ensures dynamic
obstacle avoidance and route adjustments. A critical battery
event (•), for example, triggers immediate path replanning
to make the drone return to its home position safely.

fast collision checks during motion planning (see, for in-
stance, [4], [5]). In summary, the voxelization process dis-
cretizes the environment into uniform cells called 3D voxels,
allowing efficient pathfinding using grid-based algorithms
like Dijkstra and A* [6], [7]. Based on the quality of the map,
this approach ensures accuracy and resolution optimality,
making it suitable for pre-defined inspection missions. How-
ever, the computational time to find an optimal path in large
environments using small voxel sizes can be a limitation for
online applications. To address this, hierarchical structures,
such as octrees have been proposed to represent multi-
resolution voxel grids [8].

An octree is a hierarchical data structure used to partition
the 3D space into smaller cubic regions, often referred to
as voxels, cells, or nodes. It consists of multiple layers,
each with varying resolutions. At the root (layer 0), the
octree represents the entire 3D space as a single cube. Each
subsequent layer subdivides each cell into 8 smaller cubes,
continuing until the finest layer, with the highest resolution,
is reached [9], [10]. In recent years, many researchers have
shown that octrees can significantly reduce computational
costs for storage, collision detection, and pathfinding. For
example, the works of [10] and [11] demonstrated the
effectiveness of combining octrees with probabilistic oc-
cupancy estimation, enabling UAVs to navigate uncertain
spaces. Additionally, they provided practical experiments to
demonstrate that the framework provides a fast response in
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online applications.
The use of octrees has proven essential for applications

that integrate global path planning with local motion plan-
ning, especially when the UAV needs to adjust its precom-
puted path suddenly [8], [12]. In online applications, when
the UAV needs to change the course of the mission, either
to return home due to a critical battery level or to inspect a
potential hazard closely, the motion planning algorithm is
applied first to a coarse layer and then to deeper layers,
iteratively. This approach aims to speed up pathfinding by
eliminating regions of the area where the optimal path is not
located.

The latest research has demonstrated numerous techniques
for UAVs to inspect various structures, as presented in [13]
and [14]. A few research groups, such as [15] and [16], have
explored photogrammetry techniques during the inspection
of large areas. However, the literature lacks an integration of
motion planning algorithms with photogrammetry techniques
that utilize a previously acquired sparse point cloud of the
area to plan both offline and online missions. By integrating
both techniques, we can efficiently address the inspection
of large areas using a commercial drone while taking pho-
togrammetry constraints into account.

In photogrammetry-based autonomous UAV inspection
missions, it is crucial to consider specific constraints, such
as maintaining a fixed distance from the area of interest to
ensure accurate 3D map reconstruction. In these cases, it is
necessary to plan the global mission around photogrammetry
constraints, while ensuring total coverage of the area and
navigability for the UAV. A few recent papers in the litera-
ture have developed path-planning algorithms that consider
photogrammetry constraints and use a prior model of the
area to plan the mission [17], [18]. However, these papers
do not consider the adaptability of the mission or the online
change of route, which is essential for the inspections of
large structures where the drone must return home multiple
times to replace the battery.

In our previous work [19], we developed a motion plan-
ning approach for autonomous dam inspections using a
commercial UAV. In [20], we proposed a behavior tree for
battery-aware inspection of large structures, enabling the
drone to return home for battery replacement and resume
the mission as needed. In both works, path planning was
assumed to occur in free space, allowing the drone to return
home in a straight line from any point. In practical scenarios,
however, the UAV must fly close to the area of interest,
which may contain obstacles such as trees, power lines, and
towers. In such cases, the motion planning algorithm must
account for these obstacles. Building on this foundation, this
paper presents a motion planning approach for autonomous
UAV inspections of large structures. Planning is based on a
previous sparse point cloud of the area and considers pho-
togrammetry constraints. Additionally, it enhances mission
adaptability by performing online multi-resolution motion
planning, allowing the UAV to change its route safely when
needed.

The remainder of this paper is organized as follows.

Section II defines the problem addressed in this work and
provides insights into our proposed solution. Section III
discusses the methodology for global motion planning and
online pathfinding in inspection missions. Additionally, it
analyzes the computational complexity of pathfinding using
A* in both a voxel grid and an octree. Next, Section IV
describes the experimental setup, presents the results, and
compares online motion planning using voxel grids with
multi-resolution approaches based on octrees. Finally, Sec-
tion V concludes the paper and outlines perspectives for
future work.

II. PROBLEM DEFINITION

The overall problem solved in this paper is motion plan-
ning for the inspection of large areas using a commercial
UAV that lacks built-in obstacle avoidance capabilities. Our
primary goal is to accelerate online pathfinding by using an
efficient representation of the baseline point cloud that rep-
resents the area to be inspected. This is crucial in situations
where the drone must deviate from a pre-planned (offline)
mission during an autonomous inspection operation. The key
motivations to solve this problem include:

• Battery constraints: UAVs have limited flight time,
especially in severe weather conditions, and must peri-
odically return to a home base for battery replacement,
requiring efficient planning to minimize downtime;

• Reactive dynamic inspection: The UAV may encounter
unexpected regions of interest (e.g., cracks, seepage)
that require immediate investigation, necessitating on-
line adaptation of its path;

• Obstacle avoidance: The environment may contain ob-
stacles that must be avoided to ensure safe navigation,
requiring both offline and online path-planning methods
that balance efficiency and safety;

Thus, in summary, our problem lies in developing an
autonomous navigation strategy that enables a commercial
UAV to efficiently perform an inspection mission while
safely navigating the obstacles in the environment. The pro-
posed strategy must ensure comprehensive coverage based on
photogrammetry requirements while maintaining adaptability
to dynamic conditions.

III. METHODOLOGY

In this section, we outline our proposed methodology. The
process begins with creating a sparse point cloud using pho-
togrammetry, where a UAV flies at the maximum allowable
altitude of 400 feet (FAA regulations in the US). The initial
flight follows a back-and-forth path based on parameters
such as ground sampling distance (GSD), coverage rows, and
overlap, as presented in [19]. This preliminary mission does
not account for detailed structure geometry and is used solely
for mission planning. Due to the high altitude, the resulting
sparse point cloud lacks the detail necessary for hazard
detection but serves as a foundation for planning subsequent
missions. These future missions refine the UAV’s path,
bringing it closer to the area of interest while accounting
for obstacles.
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Fig. 2: Illustration of the prepossessing steps for tailings
dam inspection: A sparse point cloud (top) is used as the
basis for creating a voxel grid (bottom), an octree (left), and
identifying the main plane to be inspected (right). The main
plane is essential for extracting critical information about
the structure to generate paths that satisfy photogrammetry
constraints, such as the one illustrated above the voxel grid.

Using the sparse point cloud, we perform several key
steps for motion planning, including plane segmentation,
voxelization, collision checking, and local path planning to
avoid obstacles as illustrated in Fig. 2. The segmentation
process identifies the primary plane, which is crucial for
defining the drone’s main inspection path using [19]. This
initial path is usually a back-and-forth coverage path, which
is overlaid onto the voxel grid, generated from the point
cloud, to detect collisions. On the voxel grid, the A* algo-
rithm is used to locally re-plan paths where collisions occur.
Additionally, we construct an Octree structure to enable
fast online motion planning. The next subsections focus on
presenting the two main components of our methodology:
global motion planning and online multi-resolution motion
planning.

A. Global Motion Planning

This section describes the steps performed to generate the
global motion planning mission offline.

1) Plane Segmentation: From a sparse point cloud, we
automatically segment the main plane of the structure to be
inspected, which will be used to define the inspection bound-
aries. For this operation, we apply Open3D’s [21] RANSAC-
based plane detection method iteratively. The algorithm
detects a dominant plane using Random Sample Consensus
(RANSAC) [22], extracting its equation coefficients a, b, c,
and d and the points belonging to the plane. The identified
planes are saved, and the boundaries of the main plane are
then obtained by connecting the maximum and minimum
points at the left and right in both the bottom and upper parts
of the plane (see Fig. 3). These boundaries are later used for
path generation. Additionally, we calculate the normal vector
of the plane n = [a, b, c], and compute the slope of the plane
with respect to the horizontal axis using

θ = arcsin

(
c

||n||

)
, (1)

Fig. 3: Plane segmentation applied to a sparse point cloud of
a coal mine tailings dam using the RANSAC algorithm. The
main plane, which corresponds to the face of the downstream
slope is the largest detected surface, presented in a lighter
color (•).

where ||n|| =
√
a2 + b2 + c2 is the magnitude of the normal

vector and θ, which represents the angle of the plane relative
to the horizontal plane, is used to rotate the generated initial
path to match the slope of the plane (see [19]).

2) Waypoints Generation: Considering the plane bound-
aries obtained in the previous step, the goal is to create
a back-and-forth path to generate a photogrammetry-based
3D map. For this step, the methodology discussed in [19]
is applied, incorporating parameters such as the proximity
of the UAV to the area of interest, the GSD, the camera
footprint, the number of rows of coverage, the distance
between the rows of coverage, the overlap and the lateral
speed. Based on this, we generate a path consisting of a
sequence of waypoints, which is used to navigate the UAV.

3) Voxelization and Local Planning: The sparse point
cloud is discretized into a voxel grid using the voxelization
process available in the Open3D library. Specifically, the
points are converted into voxels with a defined size. This
discretization allows collision checking and facilitates the
application of motion planning algorithms.

After generating the initial path, it is incorporated into the
voxel grid, where each segment is discretized, and collisions
with obstacles are checked. When a collision is detected,
the algorithm records the last point before the collision and
the first point after it. The A* algorithm is then applied
to compute an optimal path around the obstacle using a
6-connected voxel grid, with the Euclidean distance as the
heuristic.

For each collision detected, Algorithm 1 is used to locally
change the path. This algorithm takes as input the waypoints
before and after the collision (pbefore and pafter), the voxel
grid (vgrid), and the resolution of the voxel grid (δ), given
by the size of each voxel. The output consists of path (Tp),
which is a smoother version of the path initially found by
the A* algorithm. In lines 4–5 of the algorithm, the corre-
sponding points before and after the obstacle are mapped
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Algorithm 1 Path Planning Using Voxel Grid and A*

1: Input: pbefore (point before), pafter (point after),
vgrid (voxel grid), δ (resolution)

2: Output: Tp
3: Initialize Tp ← ∅
4: xinit ← ⌊pbefore/δ⌋
5: xgoal ← ⌊pafter/δ⌋
6: V ← A*(xinit, xgoal, vgrid, δ)
7: n← length(V ), i← 0, Vp ← {xn}
8: repeat
9: if ObstacleFree(xn, xi) then

10: Vp ← Vp ∪ {xi}
11: Remove intermediate points between xn and xi

12: n← i, i← 0
13: else
14: i← i+ 1
15: end if
16: until n = 0
17: TP ← TP ∪ Vp

18: Return Tp

to voxel indices using the size of the voxel, δ. Then, A*
is executed in line 6 to find a collision-free path between
them. This ensures that the original path is efficiently adapted
while avoiding obstacles. Then, the A*-generated path un-
dergoes post-processing to remove unnecessary waypoints
while maintaining obstacle-free connections in lines 7-16.
This process begins by attempting to connect the first and last
waypoints directly. If a collision is detected, the algorithm
incrementally checks intermediate waypoints, starting from
the last waypoint to the second, then the third, and so
on, until it finds the closest waypoint that allows a direct,
collision-free connection, excluding those in between. This
process is repeated iteratively from the newly connected
waypoint until the entire path is optimized. This approach
smooths the path while preserving obstacle avoidance.

B. Online Multi-resolution Motion Planning

For online planning, instead of voxel grids, we propose
the use of octrees to represent the 3D area of interest. The
octree is constructed by recursively subdividing the space
into cubic nodes, creating a multi-resolution representation.
With a depth of n layers, an octree starts with 1 root node
at Layer 0 and expands to 8n nodes at Layer n. The size
of each node decreases from Sroot meters at the root to
Sroot/2

n meters at the deepest layer. Each node is assigned
an occupancy probability (Pocc), which is calculated based on
the point density within the node, enabling the classification
of nodes as either free or occupied. Given an octree leaf node
containing N points and a cubic volume of V = l3, where l
is the edge length of the node, the occupancy probability is
given by Pocc = min(1, N/V ) to ensure that the probability
is bounded within [0, 1]. A node is considered occupied or
free based on whether the computed occupancy probability

Algorithm 2 Multi-resolution Path Planning Using A*

1: Input: xinit, xgoal, O (octree with layers l1, . . . , ln), δ0
(initial resolution)

2: Output: Pln (path)
3: Initialize Pl1 ← ∅
4: Project xinit, xgoal → l1 with resolution δ0/2
5: Pl1 ← A*(xinit, xgoal, l1, δ0/2)
6: for i = 1 to n− 1 do
7: Initialize Tli+1 ← ∅
8: for each node v ∈ Pli do
9: Tli+1

← Tli+1
∪ Subdivide(v)

10: end for
11: Project xinit, xgoal → li+1 with δ0/2

i+1

12: Pli+1
← A*(xinit, xgoal, Tli+1

, δ0/2
i+1)

13: end for
14: Return Pln

(Pocc) exceeds a threshold (Pthresh), as follows:

Node status =

{
Occupied, if Pocc ≥ Pthresh

Free, if Pocc < Pthresh
. (2)

In our system, path planning uses the A* algorithm,
applied iteratively across layers, to improve path resolution.
Let l1 denote the coarser layer and ln the finest layer. First,
the start and goal positions xinit and xgoal are projected into
the grid resolution of l1. After computing a path Pl1, only
the nodes that form Pl1 are subdivided into 8 smaller nodes
for l2. This creates a localized “tunnel” in l2 with a resolu-
tion δ0/2

2, significantly reducing the search space for A*.
This refinement process continues iteratively across layers
until the final layer ln is reached at the finest resolution,
ensuring both optimality and computational efficiency.

Algorithm 2 presents the proposed approach. Lines 6-10
describe the iterative refinement process that improves path
resolution across successive octree layers. At each iteration i,
the path Pli found in the current layer is subdivided to
generate a localized search space, Tli+1

⊆ Pli , for the finer
layer li+1. The xinit and xgoal positions are projected into li+1

with a refined resolution of δ0/2
i+1. The A* algorithm

computes the path Pli+1
within Tli+1

, iteratively optimizing
and narrowing the search space.

C. Computational Complexity Analysis

This section presents the computational analysis of the
proposed planning methods.

1) Planning over a Voxel Grid: A voxel grid uniformly
discretizes the environment into fixed-size cubic voxels.
The total number of voxels, N , grows cubically with the
dimensions of the environment:

N =
nx

δ
× ny

δ
× nz

δ
, (3)

where nx, ny, nz are the dimensions of the environment in
the x, y, and z axis, respectively, and δ is the resolution of
the voxel. For pathfinding with A*, the complexity is well
defined in the literature as O(N logN).
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Fig. 4: Environment used for autonomous inspection mis-
sions. The figure shows the slope of a coal mine tailings
dam (approximately 205,152 m²), located in Greene County,
Pennsylvania, USA.

2) Planning over an Octree: The computational complex-
ity of planning at each layer of the octree, starting from the
root, is a function of N l

o = 8l, which is the number of nodes
at each layer (l). This number increases as the resolution
increases. The final computational complexity is the sum of
all layers, where the time increases as the number of nodes
increases exponentially. For each layer, the complexity of A*
can be calculated as

O (No logNo) . (4)

For the worst-case scenario, where the A* algorithm needs
to search for a path in the entire layer, the final complexity
is the sum of all layers given by

n∑
l=1

O
(
N l

o logN
l
o

)
, (5)

where n is the total number of layers. However, considering
that at each layer, the A* algorithm searches only among the
children of the path found in the previous layer, the search
space is reduced by a factor γ, where 0 < γ < 1. In this
case, the complexity is proportional to

n∑
l=1

(
γN l

o log(γN
l
o)
)
, (6)

which represents a geometric sum due to the iterative nature
of the path refinement. By assuming a decreasing number
of nodes at each layer, the final computational complexity is
given by:

O(K logK), (7)

where K = Nn
o represents the number of nodes in the

final layer of the path tunnel. Since the search is restricted
only to the necessary regions, this is much smaller than the
full octree complexity. As a result, the A* algorithm can
find a path more efficiently compared to its application in a
standard voxel grid.

Fig. 5: Sequence of processes applied under photogrammetry
constraints: path visualization over the voxel grid, collision
detection showing points before and after collision events
(highlighted in white), and motion planning results using the
A algorithm applied to the voxel grid, depicted in black.

IV. EXPERIMENTS

This section presents experiments that illustrate and evalu-
ate our motion planning approaches. The first subsection in-
troduces our experimental setup, while the second subsection
presents the results of global path planning for autonomous
inspection missions considering photogrammetry constraints
to generate a 3D map of the area. Finally, the third subsection
presents the results of multi-resolution online local planning,
used when the drone needs to interrupt its current path
and return home from a random position. A comparison
of computational time is provided between the paths found
using a grid and those found using an octree.

A. Experimental Setup

To test the developed approaches and create the path
considering photogrammetry constraints, the Parrot Anafi
USA Gov was selected as the commercial UAV. The cam-
era parameters used were presented in the work of [19],
along with the methodology to generate the path without
considering obstacles. The inspection missions in this study
were designed for a tailings dam located in Greene County,
Pennsylvania, USA, and presented in Fig. 4.

To implement the algorithms and test the computational
performance, we used a Dell Inspiron 14 laptop with an Intel
Core i9-14900HX processor and NVIDIA GeForce RTX
4070 GPU. The machine is equipped with 32GB of DDR5
RAM and a storage unit of 1TB SSD.

B. Global Motion Planning Results

To test the global planning on a voxel grid, we designed
autonomous inspection missions that would fly close to the
area of interest at a distance of 30 m. The parameters of
the mission are presented in Table I, while the graphical
result illustrating the generated path after collision detection
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(a) (b)

Fig. 6: A closer look at path planning in the voxel grid: (a)
Motion planning results using the A* algorithm, and (b) post-
processing of the path for removal of unnecessary waypoints.

and re-planning is shown in Fig. 5. The figure depicts the
path planning based on photogrammetry constraints over a
voxel grid, highlighting points before and after collisions.
Moreover, it shows the local planning process using the A*
algorithm.

Fig. 8: Visualization of paths computed using the A* al-
gorithm across 9 layers of the octree. Each path starts at
the center of the cell where xinit is located and proceeds
to the center of the cell containing xgoal, traversing through
successive layers with increasing resolution. This multi-
resolution approach ensures optimal pathfinding by refining
the path progressively from the coarser to the finer layers.

As shown in Fig. 5, the motion planning algorithm on

Fig. 7: Octree of the tailings dam used for online multi-
resolution pathfinding. The red ( ) and blue ( ) squares
indicate the start and goal points, respectively, which are
approximately 311.13 meters apart.

TABLE I: Flight Plan Summary for the Mission

Parameter Mission
Distance to Wall (m) 30.0
Coverage Lines (count) 31
Row Distance (m) 14.84
GSD (cm/px) 1.2
Overlap (%) 60

the voxel grid successfully handled the example mission by
storing points before and after collisions and reconnecting
them to generate an obstacle-free path. Fig. 6 presents a
closer look of the local planning path, highlighting the points
before and after collisions. The left side (a), presents the path
found by the A* algorithm and the right side (b), presents the
path after the post-processing step that removes unnecessary
waypoints.

C. Online Multi-resolution Motion Planning Results

For the multi-resolution motion planning experiments, we
simulated a scenario where the UAV needs to return home
due to a critical battery event, diverging from the pre-planned
path (see Fig. 1) and flying a long distance autonomously.
For this case, We present the path refinement for each
octree layer and compare with the computational time for
pathfinding using a voxel grid. Additionally, we performed a
quantitative analysis by conducting 8 different missions using
both the octree structure and the voxel grid with varying
start and goal positions, highlighting the path length and the
pathfinding time.

Fig. 7 presents the 9-layers octree of the tailings dam along
with the start and goal points used to test the approach.
These points are approximately 311.13 meters apart from
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Fig. 9: Visualization of the path computed online using the
A* algorithm over the voxel grid, with the same start (•) and
goal (•) points as in the octree. The precomputed voxel grid
is used online to find a path that avoids obstacles.

each other. Fig. 8 showcases the path found for each layer
of the octree. As can be seen, even though we can find the
optimal path for each layer, the first layers’ paths are not
good for practical application due to the lack of resolution.
As the resolution increases in the final layers, the paths
become more suitable for practical applications.

For the same start and goal points, we perform our motion
planning algorithm using the voxel grid in order to compare
the computational time of the approach. Here, the voxel grid
is composed of voxels with a size of 1.0m, same as the 9 th
layer (finest) of our octree. Fig. 9 presents the online path
generated by the A* algorithm over the voxel grid. As clearly
observed, when the UAV needs to return home, obstacles
must be avoided, and the algorithm must provide a rapid
response due to the online nature of the operation. It is worth
mentioning that the path found using the voxel grid is the
same as the one found at the finer layer (9th) of the octree for
the same starting and goal points. Furthermore, when using
the 6-connected grid approach, the initial path shall be post-
processed (lines 7-16 of Algorithm 1) to remove unnecessary
waypoints before being sent to the drone, improving its route
efficiency in real-world applications.

To compare the time spent by both planners, we ran every
algorithm 50 times (to account for other processes running on
the computer) and took the average. The computational time
for finding a path in the voxel grid was 72 s, while the com-
putational time for running the same algorithm in the octree
was 46 s. This shows that the octre approach implemented in
this work is 1.6 times faster than the voxel grid at the same
resolution. This speedup suggests that hierarchical spatial
partitioning significantly reduces the number of nodes that
need to be processed during online motion planning. These

Fig. 10: High-Resolution 3D map of the tailings dam gen-
erated through a photogrammetry-based autonomous mis-
sion. This 3D reconstruction was created while considering
photogrammetric constraints, ensuring accurate and detailed
mapping. The resulting model facilitates structural analysis,
monitoring of potential deformations and hazards.

results emphasize the advantage of using octree-based multi-
resolution grids for efficient and fast pathfinding, particularly
in large environments where long paths need to be calculated
and computational efficiency is crucial.

To perform a quantitative analysis, we ran 8 new missions
with different start and goal positions. Table II presents the
results for 8 different missions, presenting the length of the
path and the time to find it using both an octree and a voxel
grid. As can be seen, the octree outperformed the voxel grid
in all cases, finding paths 1.41 to 2.62 times faster.

TABLE II: Online Motion Panning Results

Mission Path Length (m) Pathfinding Time (s) Speedup

Voxel Octree (Voxel/Octree)

1 134.00 42.28 16.10 2.62x
2 190.00 46.84 21.12 2.18x
3 210.00 47.35 20.04 2.36x
4 216.00 57.27 31.65 1.81x
5 227.00 68.96 46.04 1.49x
6 251.00 65.00 43.63 1.49x
7 337.00 77.58 53.44 1.45x
8 354.00 96.89 68.62 1.41x

Finally, Fig. 10 presents the high-resolution 3D map of
the tailings dam considered in this study, generated through
a photogrammetry-based autonomous mission. Such a map
allows inspectors and engineers to better understand and
inspect the area, making it possible to perform structural
analysis, monitor potential deformations, assess environ-
mental impacts, track vegetation growth, and identify any
hazards that could lead to a further collapse of the structure.
This process significantly accelerates the inspection process
compared to traditional methods, where inspectors must
physically traverse the entire structure to identify structural
changes and other hazards. Moreover, it has proven to be a
safer and more efficient solution, particularly for inspections
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that must occur under harsh weather conditions, such as
extreme cold during winter. The UAV’s ability to operate
autonomously in such adverse conditions without exposing
personnel to risk makes it a highly valuable approach, as we
plan to demonstrate in a future study.

V. CONCLUSIONS AND FUTURE WORK

This paper presented motion planning approaches for
autonomous UAV inspection of large tailings dams. Our
planners rely on the sparse point cloud of the region of in-
terest to create safe paths that will generate higher-resolution
3D maps. Our first planner incorporates photogrammetry
constraints by checking for collisions a standard back-and-
forth coverage paths against a voxel grid obtained from the
space point cloud of the dam. Once collisions are detected,
a local planner based on A* locally modifies the path
to avoid obstacles. Additionally, an online multi-resolution
motion planning method that leverages an octree structure
was proposed for situations where the UAV must adjust its
pre-planned route. A theoretical and practical comparative
analysis of computational time between voxel grids and oc-
trees was also provided, confirming that octree-based multi-
resolution grids significantly enhance the speed of online
pathfinding. These findings highlight the effectiveness of
hierarchical structures in enabling reactive, scalable motion
planning, providing a robust solution for large-scale UAV
inspections.

Future work involves experimenting with the A* algo-
rithm in a 26-connected grid and comparing the results
with the post-processed path derived from a 6-connected
voxel grid. While the 26-connected grid may initially yield
higher-quality and shorter paths, it could also slow down
pathfinding, further justifying the choice of the 6-connected
grid in this study. Moreover, we plan to create missions
that encompass all critical structures of a tailings dam
requiring inspection, such as the downstream slope, main and
emergency spillways, and the crest and pool. Additionally,
we are developing a real-time localization system to track
the UAV using a previously acquired sparse point cloud
of the structure. This approach aims to mitigate errors
associated with the Inertial Measurement Unit (IMU) and
GPS measurements, to guarantee that the mission, whether
planned offline or online, is executed with precision.
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