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Abstract— This paper presents the robust Adaptive unscented
Kalman filter (RAUKF) for attitude estimation. Since the
proposed algorithm represents attitude as a unit quaternion, all
basic tools used, including the standard UKF, are adapted to
the unit quaternion algebra. Additionally, the algorithm adopts
an outlier detector algorithm to identify abrupt changes in the
UKF innovation and an adaptive strategy based on covariance
matching to tune the measurement covariance matrix online.
Adaptation and outlier detection make the proposed algorithm
robust to fast and slow perturbations such as magnetic field
interference and linear accelerations. Experimental results with
a manipulator robot suggest that our method overcomes other
algorithms found in the literature.

I. INTRODUCTION

Attitude estimation is a crucial task for a variety of
applications, such as human motion tracking [1], augmented
reality [2], satellite control [3] and navigation and control of
aerial [4], and sub-aquatic vehicles [5]. In these applications,
orientation information is usually provided by an attitude and
heading reference system (AHRS).

With the raising of small flying vehicles, also known as
drones, small and inexpensive AHRS have populated the
market. For such systems, it is common to estimate the
orientation by combining information from a magnetic, rate
and gravity (MARG) sensor, also known as inertial mea-
surement unit (IMU), usually composed of micromechanical
(MEMS) three-axis gyroscope and accelerometer and a three-
axis magnetometer [6]. The standard approach for attitude
estimation is to compute the three components of inertial
orientation by integrating the gyroscope measurements, and
use the gravity projection and heading angle estimated by
the accelerometers and magnetometers to correct the angles
estimated with the gyro. Although theoretically simple, naive
implementations of this approach may not be precise because
magnetometer measurements are easily influenced by ferrous
material in the vicinity, and accelerometers measure not
only the gravitational direction but also linear acceleration.
In these cases, it is difficult to dissociate magnetic field
perturbation and linear acceleration from both the magnetic
field of the earth and gravity to compute the attitude ac-
curately, which can lead to poor estimates [7]. To present
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an alternative solution to these problems is one of the main
objectives of this paper.

The most intuitive way of describing attitude is by using
Euler angles, where the attitude is broken into three succes-
sive rotations. However, Euler angles exhibit singularity in
the kinematic description, which is known as gimbal lock.
In contrast, unit quaternion and direct cosine representations
avoid such singularities. Unit quaternion is preferred due to
its minimal representation and computational efficiency [8].
However, the unit quaternion representation does not pertain
to the Euclidean space, which means that weighted sum
operations, common to most sensor fusion methodologies,
may violate the unit norm constraint of the quaternion. This
paper proposes a solution to this problem in situations where
the uncertainty of the measurements may change over time.

The main contribution of this paper is the proposition
of the robust adaptive unscented Kalman filter (RAUKF)
algorithm for attitude estimation. This algorithm is robust
to fast and slow perturbations on both accelerometers and
magnetometers and, to the best of authors’ knowledge, is
the first one with such characteristics that precisely and
consistently represent the attitude using quaternions. The
proposed algorithm is tested with real experimental data
collected from a MARG sensor. The performance of the
proposed algorithm is confronted against the non-adaptive
UKF, the open source algorithm based on complementary
filter proposed in [9] and the commercial algorithm embed-
ded in the MARG device used in our experiments, which was
executed using a manipulator robot for validation purposes.

II. LITERATURE REVIEW

There are many approaches to estimate attitude using the
quaternion representation. Among the stochastic approaches,
techniques based on the Kalman filter (KF) are the most
common [10]. The issue with KF is that it pertains to the
Euclidean systematization, thus the unit norm constraints
are not ensured in standard approaches. To overcome this
limitation, an indirect form of the KF, called multiplicative
extended Kalman filter (MEKF) [11], was proposed. This ap-
proach is valid only for small estimation errors. For large er-
rors, algorithms based on the unscented Kalman filter (UKF)
as the unscented quaternion estimator (USQUE) [12] may
yield better results. Since unit quaternions are constrained
to the nonlinear Riemannian manifold, using its logarithm
and exponential maps, as in [8], [13], can better handle
its properties. A more general formulation of UKF for unit
quaternion can be found in [14]. However, these algorithms
do not explore the time-varying measurement uncertainty.
For example, if disturbance affects the measurement of the
magnetic field, the filter estimate will be severely damaged.
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The classical way of handling the temporal variation of
uncertainty is through adaptive filters, in which the statisti-
cal parameters that characterize the uncertainty are jointly
estimated with the system states. In this context, approaches
based on the techniques referred to as covariance matching
(CM) [15], interacting multiple models (IMM) [16] and
covariance scaling (CS) [17], were investigated. Among
these methods, the covariance matching approaches yield
improved results in the estimation of the covariance matrix
for Gaussian distribution, if compared to the CS approach,
and also a greater simplicity compared to approaches based
on multiple models. However, in the presence of outliers,
its performance can be damaged. In this context, median-
based approaches can be combined to mitigate the outlier
influence [18], [19]. It is important to point out that, like
the KF, these adaptive approaches also belong to Euclidean
systematization, thus requiring modifications to be used with
unitary quaternions.

In [20], the authors present an adaptive UKF for attitude
estimation. The adaptive part of the algorithm is based on
a covariance scaling approach which adapts the covariance
matrix if a fault is detected by using a chi-square test. The
main shortcoming of this approach is that, if the chi-square
test fails, e.g. for a slow varying fault, the algorithm does
not modify the covariance matrix. In addition, the attitude is
parameterized by Euler angles, being vulnerable to gimbal-
lock. Based on the algorithms shown in [12] and [20],
an adaptive UKF for attitude represented in quaternions is
presented in [21]. In [22], a inflated covariance method based
on multiplicative EKF (MEKF) is proposed to compensate
the undesired effects of magnetic distortion and body ac-
celeration. In spite of demonstrated good performance in
numerically simulated cases, this algorithm suffers the same
limitation of MEKF.

In contrast to the KF approaches, which adopt a probabilis-
tic determination of the modeled state, complementary filters
(CF) are based on frequency analysis, being simplistic and
usually computationally more efficient. In [23], the authors
proposed an explicit complementary filter (ECF) for orien-
tation estimation. Such a filter uses a proportional-integral
(PI) controller to estimate the bias of the gyro. In [24], the
authors present a computationally efficient gradient descent
algorithm given measurements from a MARG sensor. The
proposed algorithm has low computational cost and is able
to reduce the effect of the magnetic disturbance. The problem
of this algorithm is that the orientation estimated using
accelerometers suffer the influence of magnetic disturbances
due to the coupling in the gradient descent algorithm used.
In [25], quaternion measurement is computed as the compo-
sition of two algebraic quaternions, mitigating the influence
of magnetic distortion. Adaptive gains are used to reduce the
estimation error during high dynamic motion.

In this scenario, we propose an adaptive algorithm based
on UKF for attitude estimation using quaternion representa-
tion, see Section V-D. The unit norm constraint is ensured by
the use of the rotation vector parameterization, as in [8], [14].
In the proposed algorithm, an indirect measurement of the

unit quaternion is used to correct the gyro estimates. The unit
quaternion is computed from MARG sensor measurements
as in [10]. The adaptive part of the algorithm is based
on covariance matching [15]. To minimize the effect of
measurement outliers, the adaptive filter is combined with a
Hampel identifier [26], which compares the median deviation
and the median absolute deviation (MAD) to identify an
outlier.

III. QUATERNION OPERATIONS

Unit quaternions form a 4-dimensional algebra over the
real numbers and can be used to parametrize the rotation
group SO(3). The set of unit quaternions, denoted by H1,
form the group S3 under multiplication operation [14].

A. Algebra of Unit Quaternions

The unit quaternion can be represented as e = (v, n) ∈
H1, in which ‖e‖ = 1. Here v ∈ R is the real part
and n ∈ R3 is the imaginary part. Given a rotation θ
and the unit vector w, the corresponding unit quaternion
is e =

(
cos
(
θ
2

)
, sin

(
θ
2

)
w
)
. The inversion unit quaternion

operation is equals to its conjugate, given by e−1 = e∗ =
(v, −n). The product ⊗ between quaternions is defined
as ea ⊗ eb ,

(
vavb − nTa nb, vanb + vbna + na × nb

)
, in

which × denotes the cross product [27]. A vector v ∈ R3

can be rotated by a unit quaternion e, which is given by
(0, u) = e (0, v) e∗, where u ∈ R3 is the rotated vector [8].

B. Euclidean Tangent Space and Rotation Vector
Parametrization

The group S3 is a Riemannian manifold, whose elements
can be represented in a 3-dimensional Euclidean tangent
space TeS3. Many operations are defined in the Euclidean
tangent space, such as the empirical mean and covariance.
Furthermore, there are direct and inverse mappings between
the manifold and its tangent space, S3 ←→ TeS3, with
exponential and logarithm functions, respectively.

Let e = (v, n) be a unit quaternion and r = θ
2w be a

rotation vector representing a rotation θ about the unit axis
w. The unit quaternion to rotation vector mapping, called
logarithm mapping, is given by [14]:

r =

{
2 arccos (v) n

‖n‖ , if ‖n‖ 6= 0 ,

[0]3×1 , if ‖n‖ = 0 .
(1)

The inverse mapping, called exponential mapping, is [14]:

e =

{(
cos
(
‖r‖
2

)
, sin

(
‖r‖
2

)
r
‖r‖

)
, if ‖r‖ 6= 0 ,

(1, [0]3×1) , if ‖r‖ = 0 .
(2)

For brevity, logarithm (1) and exponential (2) mappings are
written as e = R2Q(r) and r = Q2R(e), respectively.

C. Sum, Subtraction, and Weighted Mean Operations

We define now the operations of sum, subtraction, and
weighted mean for unit quaternion states.

The difference between ea and eb ∈ H1 is defined as

ea 	 eb , Q2R (ea ⊗ e∗b) . (3)
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The sum of a unit quaternion ea ∈ H1 and a rotation
vector r ∈ R3, is defined as

ea ⊕ r , R2Q (r)⊗ ea . (4)

Lastly, the weighted mean operation for a set of unit
quaternions E = {ei}, i , 1 . . . nw, is defined as

ê , WM (E,W ) , (5)

where W = {wi} is a set of corresponding weights. In this
work, the gradient descent algorithm presented in [8] is used.

D. Quaternion Unscented Transform

The unscented transform (UT) is the main core of UKF.
The UT approximates the mean ŷ ∈ Rm and its covariance
P yy ∈ Rm×m of a random variable y obtained from the
nonlinear transformation y = h(x1, x2, c), where x1 ∈ Rn1

and x2 ∈ Rn2 are random variables with mean x̂1 e x̂2 and
covariance matrices P x1x1 ∈ R(n1−1)×(n1−1) and P x2x2 ∈
Rn2×n2 , respectively, and c a known deterministic variable.
In addition, the random variable x1 is composed by a unit
quaternion part x1,H and a unconstrained Euclidean part
x1,E; thus x1 ,

[
xT1,H x

T
1,E

]T
.

Now, we define the augmented state vector x̆ ∈ Rn̆ as

x̆ ,
[
xT1 xT2

]T
, (6)

where n̆ = n1 + n2, as well as the augmented covariance
matrix P x̆x̆ ∈ R(n̆−1)×(n̆−1)

P x̆x̆ =

[
P x1x1 [0](n1−1)×n2

[0]n2×(n1−1) P x2x2

]
. (7)

The UT is based on a set of deterministically chosen
samples known as sigma points (SP). The sigma points Xj ∈
Rn̆−1 and the associated weights wj , j = 1, . . . , 2(n̆ − 1)
can be chosen as

X = ˆ̆x [1]1×2(n̆−1) ⊕
√
n̆− 1

[(
P x̆x̆

) 1
2 −

(
P x̆x̆

) 1
2

]
, (8)

wj =
1

2(n̆− 1)
, (9)

where Xj is the jth column of matrix X ∈ R(n̆−1)×2(n̆−1),
(·) 1

2 is the Cholesky square root operation, and [1]1×2(n̆−1) ∈
R1×2(n̆−1) is a row vector with elements equal to one. Notice
that, the columns of the covariance matrix P x̆x̆ can be seen
as a perturbation variable, where the unit quaternion part
is parameterized as a rotation vector, which means that the
covariance matrix is defined in the tangent space, hence the
n̆− 1 dimension. The SP (8) can be partitioned as[

X x1

X x2

]
, X , (10)

where X x1 ∈ R(n1−1)×2(n̆−1) and X x2 ∈ Rn2×2(n̆−1).
Then each sigma point Xj is propagated through h:

Yj = h
(
X x1
j ,X x2

j , c
)
, (11)

where Yj =
[
YTj,H YTj,E

]T ∈ Rny is the jth column of the
matrix Y ∈ Rny×2(n̆−1).

From (11), we obtain ŷ, P yy and P x1y as

ŷ = WM (Y, w) , (12)

P yy =

2(n̆−1)∑
j=1

wj (Yj 	 ŷ) (Yj 	 ŷ)
T
, (13)

P x1y =

2(n̆−1)∑
j=1

wj
(
X x1
j 	 x1

)
(Yj 	 ŷ)

T
. (14)

At this point it is important to mention that equations
(8) and (12)-(14) differ from the one in the standard UT
transform because they consider the quaternion operations
previously defined in this section [28].

From now on, for notation simplicity, we define the
quaternion unscented transformation as the function UT(·)
comprising the set of equations (8)-(14) as:

{ŷ, P yy, P xy} = UT
(

ˆ̆x, P x̆x̆, c, h
)
. (15)

where ˆ̆x and P x̆x̆ are given by (6) and (7), respectively.

IV. MATHEMATIC MODELING

This section describes the discrete time dynamic model
used by the filtering algorithm presented in this paper.

A. Kinematic Model of Attitude

Assuming that angular rates ωk ∈ R3, measured by a 3-
axis gyros form the input vector uk of the dynamic system,
the discrete-time attitude model is given by [12]

vec (ek) = Ak−1vec (ek−1) , (16)

where vec (·) : H1 → R4 is an operator that takes the four
coefficients of the unit quaternion and stacks them in a 4-
vector, k denotes the discrete time, and

Ak−1 , c

(
T

2
||ω||

)
I4×4 +

T

2
s

(
T

2
||ω||

)
Ω(ω) ,

Ω(ω) ,


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 .
We assume that uk = ωk ∈ R3 is corrupted by random

noise and bias terms, modeled as um,k = uk + βk + qu,k, in
which “m” denotes a measured variable, um,k = [ωxm ωym

ωzm ]
T ∈ R3 are angular rates measured by a 3-axis gyros,

βk = [βωx βωy βωz ]
T ∈ R3 are bias terms, and qu,k ∼

N ([0]3×1, Qu) ∈ R3 is the input random noise. To directly
use the measured inputs in (16), bias terms and random noise
are estimated and subtracted from the measurement. Then,
uk = um,k − βk − qu,k.

Bias terms βk are modeled as a random walk process,

βk = βk−1 + qβ,k−1, (17)

where qβ ∼ N ([0]3×1, Qβ) ∈ R3 and are jointly estimated
with the other system states, yielding a joint state vector
xk ,

[
vec (ek) βTk

]T ∈ R7 .
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Equations (16) and (17) compose the process model, which
can be compactly presented as

xk = f (xk−1, qk−1, uk−1, k − 1) , (18)

where f denotes a nonlinear function of previous state
xk−1, with input uk−1, and process noise qk−1 ,[
qTu,k−1 qTβ,k−1

]T
.

B. Observation Model

The observation model relates the components of state
vector xk with the output measurement vector yk ∈ H1,
defined as yk , em. Measurements are corrupted by ran-
dom errors and modeled as em = ek ⊕ rk, where rk ∼
N ([0]3×1, Rk) ∈ R3 is the measurement noise parameter-
ized as a rotation vector. Therefore, the observation model
may be written as

yk = h (xk, rk, k) . (19)

In this paper, the measured acceleration am,k =

[ax ay az]
T ∈ R3 and magnetic field bm,k = [bx by bz]

T ∈
R3 are used to compute the unit quaternion em ∈ H1.
Assuming normalized measurements such that ‖am,k‖ = 1
and ‖bm,k‖ = 1, the unit quaternion representing the body
attitude can be computed as [25], [10]:

e∗m = eacc ⊗ emag , (20)

eacc =


(
λ1,
[
− ay

2λ1

ax
2λ1

0
]T)

, az ≥ 0(
− ay

2λ2
,
[
λ2 0 ax

2λ2

]T)
, az < 0,

(21)

emag =


(

λ3√
2Γ
,
[
0 0 λ3√

2Γ

]T)
, lx ≥ 0(

ly√
2λ4

,
[
0 0 λ4√

2Γ

]T)
, lx < 0,

(22)

where λ1 =
√

(az + 1)/2, λ2 =
√

(1− az)/2, Γ = l2x + l2y,
λ3 =

√
Γ + lx

√
Γ, λ4 =

√
Γ− lx

√
Γ and lm,k = [lx ly lz]

T

such that(0, lm,k) = e∗acc (0, bm,k) eacc.
Because these equations are nonlinear, the unscented trans-

form, given in (15), is used to propagate the measured
acceleration am,k and magnetic field bm,k errors through
equations (20)–(22). These errors are modeled as zero mean
random errors. In so doing, we obtain em used in (19).

V. STATE ESTIMATORS

We assume that the dynamic system is modeled by the
nonlinear equations (18) and (19) in which, ∀k ≥ 1, the
known data are the measured output yk and input uk−1.
It is also assumed that process noise qk−1 ∈ Rnq and
measurement noise rk ∈ Rnr are mutually independent with
covariance matrices Qk−1 ∈ Rnq×nq and Rk ∈ Rnr×nr ,
respectively. The state estimation problem aims at providing
approximations for the mean x̂k = E[xk] and covariance

P xxk = E[(xk 	 x̂k) (xk 	 x̂k)
T

] that characterize the a
posteriori probability density function (PDF) ρ(xk|y1:k).

Due to the nonlinear characteristics of the model, our
proposition is to use as basis to our approach the unscented
Kalman filter (UKF) [29]. In the standard form of the UKF
two problems arise when it is used to estimate attitude:
(i) the UKF pertains to Euclidean systematization, therefore
containing sum and weighting operations, which are not
defined for unit quaternions; (ii) the output measured noise
rk can have time-varying statistical properties, which can,
in the worst case, lead to diverging estimates. Regarding
(i), most of the issues are solved if the modified unscented
transform presented in Section III-D is applied in the place
of the standard one, as shown in Section V-A. The solution
of (ii) is our core contribution. We consider two events that
may change the statistical properties of measured noise: a
dynamic event, such as linear accelerations that mask the
gravity vector projection measured by accelerometers; and
a external influence, such as a ferromagnetic element that
disturbs the Earth’s magnetic field measured by the magne-
tometers. The rejection of these perturbations are addressed
in sections V-B and V-C.

A. Quaternion-based UKF

The UKF algorithm presented in this section is based
on the ones shown in [8], [14], which are slightly modi-
fied to encompass direct unit quaternion measurements and
multiplicative noise in the process. Henceforth, the notation
x̂k|k−1 indicates an estimate of xk at time k based on infor-
mation available up to and including time k−1. Likewise, x̂k
indicates an estimate of xk at time k based on information
available up to and including time k. Let the process noise

be partitioned as qk−1 ,
[
qT1,k−1 qT2,k−1

]T
∈ Rnq with co-

variance matrix Qk−1 , diag (Q1,k−1, Q2,k−1) ∈ Rnq×nq ,
where q1,k−1 ∈ Rnq−nx+1 is the noise nonlinearly related to
the state vector and q2,k−1 ∈ Rnx−1 is the linear partition
of noise. To improve the numerical stability of the filter,
additive noise is considered for all states [30].

Given these definitions, the modified UKF forecast step is
given by(

x̂k|k−1, P̃
xx
k|k−1, ∅

)
= UT

(
ˆ̆xk−1, P

x̆x̆
k−1, uk−1, f

)
,(23)

P xxk|k−1 = P̃ xxk|k−1 +Q2,k−1, (24)(
ŷk|k−1, P̃

yy
k|k−1, P

xy
k|k−1

)
= UT

(
x̂k|k−1, P

xx
k|k−1, 0, h

)
, (25)

P yyk|k−1 = P̃ yyk|k−1 +Rk, (26)

νk = yk 	 ŷk|k−1, (27)

where νk is the innovation. The augmented state vector
x̆k−1 ∈ Rn̆ and the corresponding covariance matrix P x̆x̆k−1 ∈
Rn̆×n̆ are respectively given by

x̆k−1 ,
[
xTk−1 q

T
1,k−1

]T
,

P x̆x̆k−1 ,

[
P xxk−1 [0](nx−1)×(nq−nx+1)

[0](nq−nx+1)×(nx−1) Q1,k−1

]
,
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with n̆ = nq + 1.
The state estimate and error covariance matrix are updated

using information from yk in the data-assimilation step,
given by:

Kk = P xyk|k−1

(
P yyk|k−1

)−1

, (28)

x̂k = x̂k|k−1 ⊕Kνk, (29)

P xxk = P xxk|k−1 −KkP
yy
k|k−1K

T
k . (30)

B. Adaptive Covariance Matrix

The uncertainty of measurements in the UKF is rep-
resented by covariance matrix Rk, which is usually con-
stant. However, the measurement uncertainties can be time-
varying. We then propose the use of innovation νk to
adjust the measurement covariance matrix online through the
covariance matching (CM) approach [15].

Based on the assumption that the observation covariance
matrix Rk is constant during a sliding sampling window with
finite length N , the basic idea of CM is to make the innova-
tion νk consistent with its covariance E[νkν

T
k ] , P yyk|k−1.

Notice that, the innovation pertains to the 3-dimensional
Euclidean tangent space. Thus, the covariance of νk is
estimated as based on the last N innovation samples as

E[νkν
T
k ] ≈ 1

N

k∑
j=k−N+1

νjν
T
j . (31)

Notice that, the UKF (see Equation (26)) approximates
the covariance by E[νkν

T
k ] , P̃ yyk|k−1 +Rk, where P̃ yyk|k−1 ,∑2(n−1)

j=1 wj ỹj,k|k−1ỹ
T
j,k|k−1. Then, Rk can be estimated by

R̂k =
1

N

k∑
j=k−N+1

νjν
T
j − P̃

yy
k|k−1. (32)

To avoid negative values due the subtraction operation
in (32), negative values in R̂k are replaced by its correspon-
dent value in the nominal covariance matrix R0.

C. Outlier Rejection

Outliers are spurious data that contaminate the statis-
tical distribution. The contaminated measurements deviate
significantly from the normal observations, which directly
reflects in the innovation value νk, and, consequently, in the
covariance estimated by CM.

The Hampel identifier [26] is an outlier identification
method that is reported as extremely effective in prac-
tice [31]. Based on this approach, our contribution is to
compute a gain λ ∈ Rnr×nr to be used as a multiplier
that reduces the outlier influence in the estimation of the
covariance matrix and also on the Kalman gain. This gain is
a diagonal matrix, wherein each the diagonal is defined as

λj,ii , min

(
1,

nσsi
|νj,i −med{νj,i}|

)
, (33)

where si = 1.4826 med{|νj,i − med{νj,i}|} is the median
absolute deviation (MAD), nσ is the number of standard
deviations (confidence region) by which the innovation sam-
ple must differ from the local median, med is the median

operator, {·} is a moving window with size N , j , k−N +
1 . . . k is an index for each element of the moving window,
and i is the index of each element of the innovation vector.

D. Robust Adaptive Unscented Kalman Filter

By combining (32) and (33) with the UKF Equations (23)-
(30), we then obtain a three step algorithm that we call
Robust Adaptive Unscented Kalman Filter (RAUKF). The
first step is the forecast step, which is given by (23)-(25)
and (27). The second step, is the robust noise estimation
given by (33), the estimate covariance

R̂k = max

 1

N

k∑
j=k−N+1

λjνj (λjνj)
T − P̃ yyk|k−1, R0

(34)

and (26). The third and last step is the data-assimilation step,
which is given by (28), (30), and

x̂k = x̂k|k−1 ⊕Kλkνk . (35)

VI. EXPERIMENTAL RESULTS AND DISCUSSION

In this section we compare the performance of the pro-
posed RAUKF algorithm with the classical UKF algo-
rithm for quaternions, the complementary filter (CF) pro-
posed in [9], and the commercial algorithm embedded
in the MicroStrain 3DM-GX1r IMU. We implemented
RAUKF using Matlab. Our code is available at https://
bitbucket.org/coroufmg/raukf_cm. Four disturbance
scenarios were evaluated: (i) abrupt and (ii) slow varying
magnetic disturbances; (iii) linear accelerations; and iv)
rotation about the origin. Actual data was collected at 40Hz
from the IMU, which was mounted on the end effector of
a Comau Smart Six manipulator, used to perform controlled
movements and to provide accurate orientation information.

To set UKF and RAUKF, we have assumed that the
covariance matrix Q1,k−1 ∈ R3×3 is diagonal with elements
related to the angular rates measured by the gyros. This
matrix was estimated as σω = [0.008 0.0065 0.0086]

T rad/s
from a temporal window in a steady-state behavior. The
additive noise of process was represented by the diagonal
matrix Q2,k−1 ∈ R6×6. This matrix is related to the attitude,
parametrized as a rotation vector, and the bias terms of
the gyros. The standard deviations were empirically set as
σv =

[
1× 10−20

]
3×1

rad and σβ =
[
1× 10−9

]
3×1

rad/s,
for attitude and bias terms, respectively. The covariance
matrix of measurements Rk is computed by the UT. The
measured acceleration and magnetic field are propagated
through the nonlinear function represented by equations
(20)-(22). Standard deviations of accelerometer and magne-
tometer are σa = [0.0361 0.0455 0.0330]

Tm/s2 and σm =
[0.0011 0.00098 0.00098]

TGauss [G], respectively, which
were estimated from a temporal window of collected data
with a steady-state behavior. The sliding window size of
RAUKF was empirically set to be N = 20 samples, which
represents a period of 0.5 s during which the noise covariance
is assumed to be constant, and the confidence region nσ = 3
standard deviations. CF has two parameters, the gain that
quantifies the gyro measurement noise, set as β = 0.007,
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TABLE I
ROOT MEAN SQUARE ERROR (RMSE) IN DEGREES. THE LOWEST RMSE RESULTS ARE HIGHLIGHTED IN BOLD.

Abrupt Magn. Slow Magn. Linear acc. Rotat. around the orig.

Algorithm φ̃ θ̃ ψ̃ φ̃ θ̃ ψ̃ φ̃ θ̃ ψ̃ φ̃ θ̃ ψ̃

RAUKF 0.30 0.90 0.48 0.07 0.09 1.84 0.28 0.87 0.16 1.08 1.31 0.91

UKF 0.30 0.90 0.62 0.98 0.51 13.0 4.0 3.78 2.36 1.97 1.73 2.23

CF 0.30 0.90 0.60 9.22 11.00 28.90 1.87 1.60 0.53 1.17 1.61 1.17

3DM-GX1 0.34 1.00 0.54 0.12 0.09 11.28 0.37 0.99 0.39 1.08 1.34 1.37

and the gain that quantifies the bias terms, set as ζ = 0.01.
These values follows the authors recommendations [9].

A. Magnetic Field Distortion

In our first experiment, the magnetic brakes of the robot
manipulator are turned on and off a few times, thus causing
an abrupt variation in the magnetic field that is perceived by
the magnetometers. Figure 1a shows the linear acceleration,
and the magnetic field, in the y-axis direction. Observe that
jumps in the magnetic field were generated. Due to the
shaking caused by the release of the brakes, some spikes of
acceleration also appear. Videos of this and other experiments
are found this link: https://goo.gl/mtFSqG. Figure 1b
shows the heading error for each algorithm. Notice that, UKF
and CF algorithms are more sensitive to the perturbations,
converging quickly to measurements even with abnormal
behavior.In contrast, RAUKF and 3DM-GX1 estimates con-
verge slowly to measurements in the presence of abnormal
behavior. However, RAUKF is less sensitive to short duration
perturbations and converges faster to the measurement as the
disturbance is over.

In a second experiment, the magnetic field was artificially
and slowly disturbed with a magnetic material. This kind of
perturbation is usually difficult to detect and can damage the
estimation. Notice that, RAUKF is the less sensitive to the

am,y bm,y UKF
RAUKF CF 3DM-GX1
Perturbation periods
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Fig. 1. (a) Linear acceleration am and magnetic field bm measurements
in the y-axis direction and (b) the error ψ̃ of heading angle.

slow varying abnormal measurement. CF yields the worst
results as shown by Root Mean Square Error (RMSE) in
Table I. The abnormal behavior of magnetic field affects the
bias estimates of angular rate in the z-direction for UKF and
in all directions for CF-M (not shown).

B. Linear Acceleration Disturbance

To test the behavior of the algorithms against the perturba-
tion of linear velocities, the manipulator executed indepen-
dent translational movements in each axis. We observed that,
even the movements being executed separately in each axis,
linear accelerations appear in all axis. This is probably due
to a small angle in the link joining the IMU and the robot
end effector. Table I shows the values of RMS for this and
other experiments. Notice that, the UKF provides the worst
results. In contrast, RAUKF yields the best RMSE indexes
and the smallest peak-error.

C. Rotations Around the Origin

In our last experiment presented in this paper, rotations
around the origin in each axis were performed. In this case,
estimates are influenced by linear accelerations that appear
due to a lever arm between the IMU and the robot end
effector. Again, the proposed algorithm yields the best results
as shown in Table I.

VII. CONCLUSIONS

In this work, a robust adaptive unscented Kalman filter for
orientation estimation using quaternions was presented. The
algorithm ensures the unit norm of quaternion in all algo-
rithm steps without forcing a normalization. The exponential
map of quaternions is used to parametrize the error quater-
nion. This parameterization allows us to perform operations
in Euclidean space and then use existing approaches to adapt
the measurement covariance matrix and detect outliers.

The proposed algorithm was compared to a nonadaptive
version of UKF, a complementary filter, and commercial
algorithm embedded in the IMU. Some experiments were
performed to verify the performance of the algorithms in
situations were distorted magnetic field and linear accelera-
tions exist. The proposed algorithm shows the best RMSE
results in all situations tested, and the smallest peak-error for
linear acceleration disturbance.
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