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Abstract— Coverage Path Planning (CPP) is crucial for UAV
applications such as inspection and surveying. While existing
CPP methods often focus on minimizing distance or time,
energy consumption remains a critical, relatively unexamined
constraint, especially for multirotor drones. This paper pro-
poses a novel CPP approach that directly incorporates an
energy model into the path-planning process. By utilizing a
Mixed Integer Linear Programming (MILP) framework and an
energy model, the proposed method aims to minimize energy
consumption while ensuring complete coverage of the target
area. Simulations and experimental results demonstrate that
the proposed approach gives optimal solutions, and using this
richer cost function reduces the processing time for the MILP
problem, opening the door for faster online CPP planners.

I. INTRODUCTION

There has been continuous and fast growth in robotics
applications over the years. A prominent area has been the
deployment of flying agents to survey, scan, inspect, or
record assigned areas. To deploy any robot, there is the need
for an offline path planner, which pre-computes the path
before the robot starts moving [1], and an online motion
planning system [2], which allows the robot to plan its path
during motion.

Traditional path planners aim to optimize the robot’s
movement from a starting point to a goal in the most effective
way [3]. However, these approaches cannot be directly used
when visiting a set of points in a given order. This is
where the necessity and value of Coverage Path Planning
(CPP) becomes apparent. CPP, as defined by Galceran and
Carreras [4], is the task of determining a path that passes over
all points of an area or volume of interest while avoiding
obstacles. This is crucial for various robotic applications,
such as vacuum cleaners, underwater vehicles, lawnmowers,
and mobile or flying robots for agriculture and inspection.

There is a permanent appeal in improving solutions for
CPP algorithms. A complete survey on methods that tackle
this problem is presented in [5]. These methods are usually
divided into Decomposition methods, Multi-Robot strategies,
Unmanned Aerial Vehicles (UAV) CPP Methods, Multi-
UAV CPP Methods, and Energy-Saving Algorithms [5].
Decomposition is the most popular class of methods [6]. For
the decomposition method, the basic concept is to divide the
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Fig. 1: Leveled flight coverage methods: The traditional
back-and-forth path (top) measures 526.49meters and con-
sumes 4,201.69 J, while the path generated by an energy
optimizer (bottom) measures 428.28meters and consumes
3,417.93 J, achieving nearly a 20% reduction in energy
consumption.

inspection area into cells (rectangular, hexagonal). Each cell
area is usually divided based on the Field of View (FOV) of
the sensor used, and then using the center of each cell, an
algorithm to visit all these waypoints generates a trajectory
to be implemented with a UAV. An example of such an
approach is to use a wavefront algorithm to visit all cells in a
given area [7], [8]. The Multi-Robot Strategies are usually an
extension of the Decomposition methods, with the addition
of multiple agents to cover the area in a shorter period, with
the same constraints. An example, of using a Graph-Based
algorithm with a cellular decomposition with a multi-robot
approach can be found in [9].

This paper is especially interested in energy-saving CPP
algorithms. Fevgas et al. [5] present a comparison of methods
that optimize energy consumption for the CPP problem.
Most of the presented studies maintain cell decomposition
and focus on energy optimizing by improving curves [10],
smoothing trajectories [11], and taking into account the wind
for a fixed-wing model [12], to mention a few. Di Franco
and Buttazzo [13], present a data-based energy model for
a specific UAV. The energy model is used to calculate an
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optimal speed to minimize the energy consumed on a straight
flight. After calculating the speed, the authors use a standard
algorithm to find a back-and-forth trajectory that covers the
entire area and minimizes turns with the most efficient speed.

As seen in the literature about CPP [?], [5], the most
accepted approach to tackle the problem is to use a cellular
decomposition and then a standard path that visits all the
cells, usually back-and-forth, being beneficial for fixed-wing
UAVs, but not as much for multirotor UAVs. Mier et al. [14]
have published a state-of-the-art library using this standard
approach, considering the application of surveillance robots,
lawnmowers, and agricultural vehicles. This library contains
four modules. The first one generates a headland field, which
is the limit of the area to be covered. The second module
is the swath generator, which covers the field with the
longest parallel paths to optimize distance and coverage. The
third module creates a route with different patterns (snake,
spiral, or custom), and finally, the fourth module is a path
planner, where Dubins [15] or Reeds-Sheepp’s curves [16]
can be added. This state-of-the-art library shows a gap to be
covered, particularly in more complicated 3D environments,
such as inspection or scanning or using the omnidirectional
capabilities of multirotor UAVs.

With the growing need for multirotor UAV applications
and the proven benefits of deploying this kind of robot
to unravel the CPP problem, the most critical constraint
and barrier to the wider acceptance of this application is
its energy consumption constraint, which is also connected
directly to the mission and deploying time. Examples of up-
to-date studies regarding drone energy consumption and how
this energy is affected by missions are [17], [18], and [19].
The key aspects of these studies and the most relevant
conclusions are that energy models are still complex and
depend on external and internal factors. The most accurate
methods are data-based but rely on the operated drone, data
quantity, and data quality. Besides, the inclusion of energy in
the CPP problem is commonly addressed indirectly, trying
to minimize curves, acceleration, and deacceleration sec-
tions [5]. A more direct way to include the energy limitations
is to insert a constraint related to the battery consumption,
which commonly relates to a maximum flight distance [20] or
maximum flight time [21] that a UAV can cover with a single
charge. A method that includes an energy measurement to
visit a set of waypoints is presented in [19]. The authors
show that a straight path is not always the most energy-
efficient for multirotor UAVs, especially when climbing or
descending. They also evaluate their proposed optimization
approach using the aircraft dynamics and mention that, on
average, the optimized paths are 1.6% – 3.3% more efficient
than the shortest distance.

Given the current literature, to the authors’ knowledge,
energy has not been used as a cost function to solve the CPP
problem for drones in inspection missions using a Travelling
Salesman Problem (TSP) method, where the main objective
is to guide the UAV to reach all the waypoints by following
trajectories that minimize the consumed energy. Thus, the
main contribution of this paper is to propose a technique

Fig. 2: Proposed approach: 1) using previous information, a
set of waypoints is computed; 2) a cost matrix is generated
to represent the energy cost between each pair of waypoints;
3) MILP is used to find the minimum energy path that visits
each waypoint once; 4) the path is converted into a feasible
trajectory.

that includes energy estimation on the optimization problem
and compare it to a more traditional approach. The method
contained in this paper is a step forward in the inspection of
3D environments using real-life drone constraints.

II. PROBLEM STATEMENT

Current UAVs inspection methods prefer time constraints
over energy consumption, limiting the adoption and efficient
use of multirotor UAVs. This paper addresses this gap by
integrating an energy-aware approach into the inspection
planning process. Specifically, given a predefined set of
three-dimensional (3D) waypoints covering a target area or
structure, this study focuses on determining the optimal path
that minimizes energy expenditure while ensuring all way-
points are visited. The provided waypoints are assumed to be
strategically selected to ensure proper orientation, complete
coverage, and sufficient image overlap for photogrammetric
3D reconstruction. As this study focuses exclusively on
energy optimization, the waypoint selection process is con-
sidered a separate, pre-established step. By isolating energy
efficiency from data acquisition concerns, this approach aims
to develop a robust and adaptable energy-aware method that
can be applied to various inspection scenarios, improving
effectiveness.

III. PROPOSED APPROACH

Our proposed approach has four steps, as shown in Fig. 2.
The first step receives a set of waypoints to be visited and a
desired speed to accomplish the mission. The second step is
to use an energy consumption estimate of the paths between
waypoints and generate a cost matrix using all of them. The
third step uses a Mixed Integer Linear Programming (MILP)
algorithm to solve the Traveling Salesman Problem (TSP)
by visiting the waypoints and minimizing the accumulated
energy. The fourth step generates the drone’s trajectory using
the sequence from step three.

A. Waypoints

Several methods can be used to obtain the coverage
waypoints necessary to complete an inspection mission. A
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Fig. 3: Back-and-forth method and generated waypoints to
inspect a dam for photogrammetry reconstruction.

traditional back-and-forth method described in [22] is used
when the drone records a video and obtains a continuous
feed of consecutive images. The presented approach will not
assume continuous video but photos taken at each waypoint.
Each image covers an area with sufficient overlap with
neighboring pictures. However, we still use the back-and-
forth method to generate our waypoints, which will be
samples of the coverage lines. Figure 3 shows an example of
the coverage lines used to inspect a dam, which was obtained
with the traditional back-and-forth method proposed in [22].
The figure also shows the dots representing the waypoints
used in our methodology.

B. Energy Estimate

Our method assumes that an energy model estimates the
energy spent between waypoints. Among the relevant models
shown in [17] the best energy estimator was shown to be the
one based on data. As our goal is to obtain a practical energy
model rather than a highly accurate approximation, we adopt
the method proposed by Kirschstein in [23].

In Kirschstein’s [23] method, the power consumed by a
multirotor drone is composed of five components as:

PUAV = Pair + k · Plift + Pprofile + Pclimb + Pint , (1)

where Pair is the power to overcome body drag, k is a lifting
power markup, Plift is the power to lift the UAV, Pprofile

is the power to overcome rotors drag, Pclimb is the power
needed to climb, and Pint is the necessary power for the
inner electronics. It is important to note that Pclimb is the
component that strongly influences the energy consumption
and will change depending on the drone’s climb and de-
scending rate.

The first component of equation (1), Pair, is calculated
as:

Pair =
1

2
· ρ · v3 ·A · Cair , (2)

where ρ is the air density, v is the drone speed relative to the
wind (if any), A is the UAV frontal surface area, and Cair is
the Air drag coefficient.

The term Plift from equation (1) is calculated as follows:

Plift = w · T , (3)

where w is the downwash coefficient and T is the thrust,
which is calculated as:

T =

√
m2 · g2 +D2

body + 2 ·Dbody ·
(
Pclimb

v

)
,

where m is the UAV mass, g is the gravitational acceleration,
and Dbody is the air drag force:

Dbody =
1

2
· ρ · v2 ·A · Cair .

The third component of equation (1), Pprofile, is given by:

Pprofile = nrotors · ρ ·R · v3t ·

(
1 + 3

(
v

vt

)2
)

· σ · Cbd

8
,

(4)
where nrotors is the number of rotors, R is the rotor radius,
Cbd is the blade drag, vt is the blade tip speed, and σ is the
rotor solidity ratio.

The fourth component of equation (1) is calculated as:

Pclimb = m · g · v · sin(γ) , (5)

where γ is the climbing angle.
Finally, the fifth component of the total power, Pint, is

the necessary power for the inner electronics and depends
directly on each UAV consumption.

Using (1) the energy can be calculated by:

Etotal = PUAV · ttravel , (6)

where ttravel is the time of flight.
To compose the cost matrix necessary for our optimization,

we build a n× n matrix C, where n is the total number of
waypoints to be visited, and each cell Cij represents the
necessary energy to travel from waypoint i to waypoint j
at a desired speed. To calculate this energy estimation, we
initially calculate the time to travel from i to j, then calculate
the power consumption using (1). Finally, we multiply the
power by time to calculate the energy using (6).

C. TSP solution

There has been extensive research on how to solve the
TSP problem. A compilation of methods is summarized
in [24]. Since the objective of this research is to generate
UAV trajectories using energy estimation, we choose an
Exact Method that guarantees to find the true optimal. Thus,
we use Mixed-Integer Linear Programming (MILP). The
primary issue with this method is the exponential increase
in computer power and time required to solve NP-hard
optimization problems. However, its main advantage is that
it finds the true optimal instead of an approximation, as other
faster methods such as heuristic or metaheuristic algorithms.

In our MILP solution, we used [25] as the base to create
our optimization problem. However, we performed several
modifications, including removing the constraints related to
the multi-robot coverage and modifying the constraints to
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consider energy as the optimization objective. Our final
optimization problem can be posed as:

Find the route that minimizes the maximum energy spent
by a UAV when visiting all the waypoints:

Minimize Vmax , (7)

Subject to:

Vmax ≥
∑

i∈N,j∈N

Cij ·Xij + d (8)

∑
i∈N,j∈N

Cij ·Xij ≤ L, (9)

∑
i∈N

Xij = 1, (10)

∀j ∈ 2..N

Xii = 0, (11)

∀i ∈ N

∑
i∈N

Xip −
∑
j∈N

Xpij = 0, (12)

∀p ∈ N

ui − uj + 1 ≤ N · (1−Xij) . (13)

∀i, j ∈ 2..N

The objective function that minimizes the energy for the
entire path is shown in (7). This minimizes the total cost of
the TSP such that the energy is at least enough to visit all the
waypoints, as shown in (8). The variable X is a boolean value
the optimizer needs to select; a true value corresponds to
an active segment from waypoint i to waypoint j. A battery
constraint (9) is used to limit the maximum energy available.
A constraint is implemented to ensure that each waypoint is
visited only once in (10), except for waypoint 1. To prevent
the UAV from starting and finishing at the same waypoint,
we established the condition outlined in (11). Constraint (12)
guarantees that the same drone arrives and departs from the
same node. The Miller-Tucker-Zemlin formulation for sub-
tour elimination is given by (13).

D. Generate Trajectory
The last step of our methodology is to generate a tra-

jectory for the drone. From the optimization problem, we
get matrix X , which stores the sequence of waypoints to
be visited. Using this sequence (path), we will employ two
methodologies. The first involves a path follower trajectory
that only uses the edges as waypoints to change direction and
tries to maintain constant speed the whole time, no stop is
considered on each waypoint. The second involves the use of
methodology proposed in [26], which is based on creating
minimum snap trajectories [27] between the waypoints to
maintain control over the drone’s speed and minimize energy
usage.

IV. EXPERIMENTAL RESULTS

In all simulations and experiments of this paper, we
assume the use of the Parrot ANAFI USA drone, which is
able to fly for around 30 minutes with a single battery. The
complete specifications of this drone can be found in [28].

Several experiments were performed to evaluate the pro-
posed approach. We first simulate the energy consumption
model with the parameters of our drone to highlight and un-
derstand its characteristics. Second, we compare our proposal
with the traditional back-and-forth method in a dam coverage
problem. Third, an evaluation with random waypoints in a
3D scenario was conducted to test the limits of the MILP
solver. Fourth, we compare, in simulation, a minimum snap
trajectory against the original path for the back-and-forth
method and the energy-optimized paths found by our method.
Finally, we used our method in a real-life experiment to
create a 3D map of a water dam.

A. Energy evaluation

This section simulates the energy estimation model pro-
posed in [23] with the parameters of the Parrot Anafi USA
drone, presented in I. We first simulate a leveled flight for
a straight segment with different lengths. Each curve in Fig-
ure 4 represents the change in energy for different segments
as a function of the speed. It is evident and anticipated
that greater distances require more energy. Additionally,
the smaller the segment, the less important the speed is.
Also, observe that an optimal speed (the one that results
in minimum energy) is associated with each scenario.

A similar trend is shown in Figure 5 related to the climbing
angle. As the climbing angle increases, so does the energy
required. Once again, it is clear that an optimal speed can
be identified for any continuous flight. Furthermore, this
plot indicates that energy consumption continues even during
descent (negative angles).

Fig. 4: Required energy for a leveled flight for different
distances evaluated at speeds from 1 to 15 m/s.
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Fig. 5: Required energy for climbing or descending the same
distance evaluated at speeds from 1 to 15 m/s.

TABLE I: Model parameters used in simulations.

Variable Value Unit Description
ρ 1.225 kg/m3 Air density
A 0.15 m2 Frontal surface area
Cair 0.65 - Air drag coefficient
w 0.2 - Downwash coefficient
m 0.5 kg Mass
g 9.81 m/s2 Gravity

nrotors 4 - Number of rotors
R 0.0324 m2 Rotor area
Cbd 0.075 - Body drag coeff.
vt 20.3575 m/s Blade tip speed
σ 1.2 - Rotor solidity ratio

B. Dam inspection

For the dam inspection, we present simulations of a drone
flying over the dam using different coverage methods. We
compare three different coverage methods: a standard back-
and-forth method; TSP solved using MILP with distance
as a cost function; and TSP solved using MILP with an
energy cost function, which is the proposal of this paper.
Trajectories are not computed for these approaches, and only
paths are compared. To ensure a fair comparison among
these three scenarios, they all operate under ideal conditions
with no wind, and it is assumed that the UAV can fly
at a constant speed while maintaining the same starting
and ending positions. We use 32 waypoints arranged at a
constant distance to the dam, those waypoints are obtained
as discussed in Section III-A.

The results of the back-and-forth method are in Fig. 6a
while the ones related to optimization using the distance
cost function, and the energy cost function are in Fig. 6b.
Notice that the optimization of both cost functions resulted
in the same path. Table II summarizes the results of this
experiment.

Our results show that the optimal path using the Energy
cost function is the same as the optimal path using the
Distance cost function for the conditions of our simulation.
Since our method assumes that the paths between two

(a)

(b)

Fig. 6: Coverage methods: (a) Back-and-forth path; (b)
Minimum Energy and Minimum Distance (same path).

TABLE II: Distance and energy cost functions evaluated in
a dam inspection (Fig. 6).

CPP path Distance (m) Energy (J)
Back-and-forth 423.6993 3381.42

Distance cost function 372.1059 2969.57
Energy cost function 372.1059 2969.57

waypoints are straight lines and does not consider other
constraints, such as wind and drone acceleration, this is an
expected result. However, recent research [19] has shown
that a straight-line path is not always the most efficient path,
especially if the drone’s acceleration is considered.

Some studies attempt to optimize the path length when
performing 3D reconstruction using drones [29], [30], [31].
From our results (assuming no wind, straight-line paths, and
constant velocity), it is unclear when using an energy model
over a distance cost function is better. To clarify this, we
performed the experiment shown in the next section, which
considered less structured sets of waypoints.

C. Energy versus Distance cost function

We used multiple scenarios with an increasing number of
random points to test the performance of the optimization
using energy and distance cost functions. Fig. 7a and 7b,
respectively, present an example of this scenario and its
optimized solution.

The main finding from this experiment is the significant
improvement in efficiency offered by the energy cost function
compared to the distance cost function, particularly when the
problem increases in size and complexity. As shown in Fig. 8,
energy optimization can enhance performance remarkably.
This substantial efficiency gain emphasizes the advantages
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(a) (b)

Fig. 7: Random points scenario: (a) The generated points
around an inspection structure and (b) The generated mini-
mum energy path.

Fig. 8: Speedup for the Energy cost function against the
Distance cost function.

of employing the Energy model, particularly as the scenario
grows.

D. Trajectory generation

In this section, we evaluate the entire proposed approach,
including the trajectory generation step, which was not
considered in the previous section. The simulations use a
scaled version of a real-life dam inspection problem. We
compare our method with the back-and-forth method with
and without a trajectory generation. The trajectories for back-
and-forth and our method are shown in Fig. 9. As proposed
before, the trajectory is generated using the minimum snap
approach proposed in [27].

Relevant results are presented in Table III. Notice that the

TABLE III: Performance comparison of different methods.

Method Distance
(m)

Avg. speed
(m/s)

Max. Accel.
(m/s2)

Energy
(J)

Back and Forth Path 48.74 0.50 1.49 2568.42
Trajectory 49.37 0.51 0.81 2559.43

Energy Opt. Path 45.05 0.52 2.16 2296.29
Trajectory 45.06 0.52 0.52 2271.19

(a) (b)

Fig. 9: Simulated paths and trajectories: (a) Back-and-forth
method; (b) Minimum energy method. The dimensions are
in meters.

minimum energy method reduces energy needs by around
10% when compared to the back-and-forth approach. Also,
in each case, an average speed of 0.5 m/s2 is maintained.
Finally, for the paths, the maximum required acceleration
is approximately four times larger than the acceleration
required by the minimum snap trajectory.

By comparing the speed and energy in Fig. 10, we observe
that the minimum snap trajectory shows more variability in
speed but experiences fewer abrupt changes. These differ-
ences become apparent in the energy plots where the drone
following the original path suffers from sudden changes,
while the one following the minimum snap trajectory dis-
plays a more continuous pattern. These abrupt speed changes
are related to large accelerations that, in real life, are difficult
to be followed by the UAV.

E. Real life evaluation

In this section, we show a result where the proposed
methodology was used to create a 3D map of a water dam,
given hardware and software limitations at this time we did
not use any trajectory generation in this experiment since the
commercial drone only follows waypoints. After the flights,
we processed the data using the photogrammetry software
Colmap [32] and obtained a point cloud. For comparison,
the ANAFI drone was programmed to execute two missions:
first, the drone records a video following a traditional back-
and-forth trajectory; second, the drone uses the method
presented in this paper by visiting each waypoint in the order
provided by the energy-based MILP optimizer and taking
pictures at each waypoint.

The top view of the sparse point clouds overlaid by the
camera positions for the back-and-forth and the minimum
energy cost function are presented in Fig. 11. The point
clouds obtained with both methodologies are visually similar,
although the one obtained by our method is larger, given that
the photos have more resolution than the video. Fig. 12 shows
the dense point cloud obtained with the minimum energy cost
function.

A major drawback of our methodology, which we ob-
served during our experiments, was that our mission time
was longer than that of a traditional back-and-forth method
despite the shortest distance of our path. The back-and-forth
method took 1 minute and 48 seconds, while the proposed
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(a)

(b)

Fig. 10: (a) Speed and (b) Energy plots for computed
trajectories: The top images correspond to the back-and-
forth method, and the bottom images represent the minimum
energy method. The left side shows the minimum snap
trajectory and the right side shows the path.

method took 8 minutes and 52 seconds. The difference in
time mainly occurred because the drone halted for approxi-
mately 12 seconds at each waypoint to take a picture, which
were not considered in the minimum energy evaluation, and
waypoint-based navigation caused the drone to accelerate and
decelerate to reach each waypoint.

V. DISCUSSION
The experimental results in the previous section show that

the proposed approach is beneficial and can further improve
the solution for the CPP. The most significant finding is the
drastic reduction in processing time as the complexity of the
problems increases. From our analysis, we found that this
behavior corresponds to the richer information contained in
the energy cost function when compared to the distance one.

(a)

(b)

Fig. 11: Sparse point cloud with different methods: (a) Back-
and-forth method; (b) Minimum energy method.

Fig. 12: Point cloud generated for a Water dam using the
minimum energy method.

This becomes explicit when we analyze the MILP solver,
which uses a branch-and-bound algorithm. We noticed that
the energy-based optimizer eliminates branches faster than
the one relying on distance.

As we observed in the real-life experiment, implementing
the optimized paths has limitations for commercial UAVs,
which traditionally follow waypoints and need to stop at each
one to take a picture, there is the option to consider this into
the optimizer, or work with different lower-level controllers
to guarantee that the UAV can follow optimized trajectories,
and take pictures at the desired position and orientation.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a coverage-path planning methodol-
ogy that optimizes the path taken by an inspection drone
using an energy cost function. The paper describes the
methodology and evaluates its behavior through several
simulations and a real-world experiment. The energy model
used in this paper is a practical approach for optimizing
UAV paths without requiring complex dynamic or data-based
methods. Its versatility and adaptability make it suitable as
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the cost function for our optimization problem. The use
of Mixed-Integer Linear Programming (MILP) demonstrated
that a feasible solution exists. Additionally, incorporating an
energy cost function improved processing time. Although
this approach may not be suitable for online planning, it
can serve as a valuable resource for preparing inspection
missions using multirotor UAVs.

While the minimum-energy trajectory with minimum snap
has been recognized as the most efficient approach for energy
consumption, implementing it practically on commercial
UAVs remains difficult. Barriers such as constraints from
standard flight controllers, limited onboard computational
resources, and the need for precise control adjustments
hinder its widespread adoption.

It is well-known that real-life inspection problems are sig-
nificantly larger than those analyzed in this paper. Therefore,
after showing the benefit of using an Energy cost function,
adopting a metaheuristic approach could yield good results
in a shorter time frame, making it more suitable for online
planning. Methods proposed by [30] and [29] could benefit
from this approach with minor adjustments by replacing the
minimum distance with the minimum energy cost function.

Furthermore, [25] has shown that MILP is adequate for
multi-robot systems. Our future work will explore more
complex problems by implementing a similar technique to
address multiple inspection areas with various drones.
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