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Real-Time Ellipse Detection for Robotics
Applications

Azarakhsh Keipour1, Guilherme A. S. Pereira2, and Sebastian Scherer3

Abstract—We propose a new algorithm for real-time detection
and tracking of elliptic patterns suitable for real-world robotics
applications. The method fits ellipses to each contour in the
image frame and rejects ellipses that do not yield a good fit. The
resulting detection and tracking method is lightweight enough
to be used on robots’ resource-limited onboard computers, can
deal with lighting variations and detect the pattern even when the
view is partial. The method is tested on an example application
of an autonomous UAV landing on a fast-moving vehicle to
show its performance indoors, outdoors, and in simulation on a
real-world robotics task. The comparison with other well-known
ellipse detection methods shows that our proposed algorithm
outperforms other methods with the F1 score of 0.981 on a
dataset with over 1500 frames. The videos of experiments, the
source codes, and the collected dataset are provided with the
paper.

Index Terms—Object Detection, Segmentation and Categoriza-
tion; Computer Vision for Automation; Data Sets for Robotic
Vision; Ellipse Detection and Tracking.

I. INTRODUCTION

REAL-TIME detection and tracking of circular and elliptic
shapes using an onboard vision system are essential for

many real-world (mainly robotics) applications. For example,
many aerial robot’ landing zones consist of an elliptical
shape [1], and autonomous cars need to detect the circular
road signs [2].

Detecting ellipses in images has been a topic of interest for
researchers for a long time [3], [4]. In general, it is possible
to classify the available ellipse detection approaches into four
classes.

The first class contains voting-based algorithms, including
Hough Transform (HT) [5] and the methods based on it.
The HT algorithm uses a 5-dimensional parametric space
for the ellipse detection task and is too slow for real-time
applications. Other methods try to enhance HT by reducing
the dimensionality in parametric space [6], [7], [8], performing
piecewise-linear approximation for the curved segments [9]
or randomizing the method [10], [11], [12]. Some of these
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modified HT-based methods are fast but generally less accurate
and unsuitable for many robotics applications.

The second class contains optimization-based methods.
Most popular methods convert the ellipse fitting problem into
a least-squares optimization problem and solve the problem
to find the best fit [13], [14]. These methods are generally
not robust and tend to produce many false positives. However,
their high processing speed is useful for quickly estimating
the ellipse as the first step in other methods. Another group
of optimization-based methods try to solve the non-linear
optimization problem of fitting an ellipse using a genetic
algorithm [15], [16]. These algorithms perform well in noisy
images with multiple ellipses, but their processing time makes
them impractical for real-time applications.

The third class consists of methods based on edge linking
and curve grouping [17]. These methods can detect ellipses
from complex and noisy images but are generally computation-
ally expensive and cannot be used in real-time applications.

The last class contains the methods that use an ad-hoc
approach or combine the methods from the first three classes
to achieve a faster and more accurate ellipse detection. A
real-time method proposed by Nguyen et al. [18] detects
arc-segments from the image and groups them into elliptical
arcs to estimate the ellipse parameters using a least-square
optimization. A method proposed by Fornaciari et al. [19]
combines arc grouping with Hough Transform in a decom-
posed parameter space to estimate the ellipse parameters. In
this way, it achieves a real-time performance comparable to
slower, more robust algorithms.

Currently, in many robotics applications, the detection of the
previously-known elliptic objects is done by general learning-
based object detection methods [20]. However, this approach
requires collection and enhancement of large amount of data
for each individual object and access to powerful computing
systems for training. Recently, there has been an effort to
implement a learning-based method specifically for ellipse
detection [21]. The method has been shown to work well for
occlusions and partial views. However, it requires a powerful
processor and is not yet suitable for real-time execution on
onboard computers.

While many ellipse detection algorithms are proposed for
computer vision tasks ([22], [23], [24]), the performance of
these methods drops when used in real-world robotics tasks.
Some of the challenges in these applications include:

• The algorithm should work online (with a frequency greater
than 10 Hz), generally on the robot’s resource-limited on-
board computer.
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• The elliptical object should be detected when it is far from
or close to the robot.

• The shape of the ellipse is transformed by a projective dis-
tortion, which occurs when the shape is seen from different
views.

• There is a wide range of possible illumination conditions
(e.g., cloudy, sunny, morning, evening, indoor lighting).

• Due to reflections (e.g., from sources like sun, bulbs), the
pattern may not always be seen in all the frames, even when
the camera is close.

• In some frames, there may be shadows on the pattern (e.g.,
the shadow of the robot or trees around).

• In some frames, the pattern may be seen only partially (due
to occlusion or being outside of the camera view).

• In some frames, the pattern may not be present.
Different approaches have been devised in the literature

to detect and track an elliptic pattern in real applications
to address the challenges above. For example, [25] uses the
circular Hough-transform algorithm for the initial detection,
which is a slow algorithm, and then uses other features in their
pattern for the tracking. The authors of [26] have developed a
Convolutional Neural Network trained with over 5,000 images
collected from the pattern moving at a maximum speed of
15 km/h at various heights to select (validate) the desired
ellipse from all the ellipses detected using the method in [27].
The authors of [28] use the method proposed in [19] for ellipse
detection only when their robot is far from the pattern and
switch to other features in their pattern for the closer frames.

It is possible to use a predictor filter along with the detector
to narrow down the region of interest (ROI) and improve the
detection speed of ellipses across the frames. The authors
of [29] and [30] use Kalman filter to predict the direction of the
ellipse movement in the frames, increase the detection speed
and reduce the false positives. In many robotics applications,
the combined simultaneous motions of the elliptic pattern,
the robot, and the camera complicate the prediction provided
by such predictors, resulting in the loss of tracking on many
frames, triggering a detection on the entire frame and slowing
the tracking speed.

This paper proposes a novel ellipse detection method that
performs on resource-limited onboard computers in real-time.
Our proposed ad-hoc method first extracts all contours from
the input image and then uses a least-square method to fit an
ellipse to each contour. It tests how well the estimated ellipse
fits the contour and starts rejecting the contours using several
criteria. The remaining contours are accepted as resulted
ellipses, and if there are no contours left (e.g., due to the
absence of ellipses in the frame), the algorithm returns an
empty set of ellipses. The detection method is combined with
a simple tracking algorithm that changes detection parameters
as necessary and significantly increases the elliptical pattern
detection’s precision and performance. This simple tracker has
been shown to be faster than using predictor filters due to the
reduced tracking losses. The resulting detector and tracking
method can deal with lighting variations and detect the pattern
even when the view is partial. By comparing the results of our
experiments on a collected dataset to the other methods tested
on similar datasets we show that our method outperforms all

the other real-time ellipse detection methods proposed so far.
Section II explains the developed method for detection

and tracking of the elliptical targets; Section III shows an
example real-time application that uses the proposed algorithm
and compares the performance with some other available
well-known methods. Finally, Section IV discusses how the
proposed method can be further improved in the future.

II. ELLIPSE DETECTION AND TRACKING

The idea of the proposed ellipse detection algorithm is to
fit ellipses to all the contours in a frame or the region of
interest and then decide if the ellipse is a good fit. With real-
time ellipse fitting algorithms and fast criteria for checking
the fit, the result is a real-time detection algorithm that can
detect ellipses as long as the elliptic pattern’s contours are
(at least partially) extracted during the contour extraction.
With a suitable contour extraction method, the whole detection
becomes robust to the lighting and environmental changes.

The pseudocode for the proposed ellipse detector is shown
in Algorithm 1. The detection function receives a frame and a
set of threshold values used in the function and returns a set of
detected ellipses. A step-by-step explanation of the algorithm
is as follows:

1) The first step of the algorithm is to extract edges from the
input frame and create the edge image. We used the Canny
edge detector [31], considering that the thresholds should
be selected carefully to extract suitable edges in a large
variety of conditions (e.g., illumination) while preventing
the generation of too many edges. Usually, it is beneficial
for smaller targets to produce more edges; this action will
increase the processing time but reduces the probability of
not having an edge for the elliptic target.

2) The resulted edges are utilized to extract contours using
the algorithm proposed by Suzuki and Abe [32]. This
step helps make connections between relevant edges and
enables the extraction of shapes in a frame. Ideally, each
contour is a collection of connected points constructing a
shape’s border in the edge image.

3) Each contour is processed individually to determine if it is
a part of an ellipse or not. For robotics tasks, an ellipse
can have one of the following contour types:
• A single contour containing a full ellipse without

any occlusions, broken segments or additional contours
(Fig. 1(a)).

• A single contour containing an ellipse with addi-
tional connected contours from the rest of the pattern
(Fig. 1(b)).

• Multiple contours, together constructing a full ellipse
(Fig. 1(c)).

• A single contour containing an ellipse that is partially
occluded by other objects (Fig. 1(d)).

• A single contour containing an ellipse that is partially
seen in the frame (Fig. 1(e)).

• A combination of the above contour types (Fig. 1(f)).
In order to correctly detect the above contour types, the
following process is performed on each contour:
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Algorithm 1 Proposed approach for ellipse detection

1: . This function detects all the ellipses found using the
input criteria (thresholds)

2: function DETECTELLIPSES(frame, thresholds)
3:
4: . Initialize an empty set for the detected ellipses
5: Detections← ∅
6:
7: . Detect all edges in the frame
8: edges← DETECTEDGES(frame)
9:

10: . Extract contours from the detected edges
11: contours← EXTRACTCONTOURS(edges)
12:
13: for each c ∈ contours do
14: . Reject if the contour is too small
15: if |c.pixels| < minContourSize then continue
16:
17: . Fit an ellipse to each contour
18: ellipse← FITELLIPSE(c)
19:
20: . Reject ellipses with unreasonable dimensions
21: if ellipse.largeAxis > mxAxSize then continue
22: if ellipse.smallAxis < mnAxSize then continue
23: axisRatio← ellipse.largeAxis / ellipse.smallAxis
24: if axisRatio > maxAxisRatio then continue
25:
26: . Reject contours with small overlap with ellipse
27: overlap← c.pixels ∩ ellipse.pixels
28: if |overlap| / |c.pixels| is small then continue
29:
30: . Reject ellipses with small overlap with the edges
31: overlap← ellipse.pixels ∩ edges.pixels
32: if |overlap| / |ellipse.pixels| is small then continue
33:
34: . Add the detected ellipse to the set of detections
35: Detections.Insert(ellipse)
36: end for
37:
38: . Return the detections after all contours are processed
39: return Detections
40: end function

a) If a contour has a very small number of pixels, it is
ignored since it is most probably just noise.

b) An ellipse is fit to the contour using the least-square
approximation method described by Fitzgibbon and
Fisher [14]. The method fits an ellipse to any input
contour; therefore, the contour should be further pro-
cessed to determine the actual ellipses.

c) The resulting ellipse will be ignored if any of the axes
are too small or if the ellipse’s eccentricity is high
(close to 1). In high eccentricity, the resulting ellipse
is similar to a line and is not really an ellipse.

d) The current contour is intersected with the perimeter
of the resulted ellipse, described by its center point,

Fig. 1: Contour types of ellipses in different conditions: (a) A
single contour containing a full ellipse. (b) A single contour
containing a full ellipse with additional connected contours
from the rest of the pattern. (c) Multiple contours, together
constructing a full ellipse. (d) A single contour containing an
ellipse that is partially occluded by another object. (e) A single
contour containing a partially-seen ellipse. (f) A single contour
containing a full ellipse with additional connected contour
branches that is partially seen in the frame.

minor and major axes, and rotation angle. Then, the
ratio of the number of pixels in the intersection to the
number of all pixels in the contour is calculated:

ContourOverlap =
|Contour ∩ Ellipse|

|Contour|
, (1)

where |·| is used for the number of pixels. A low result
means that the contour and the resulted ellipse do not
fit well, and a significant portion of the contour is not
lying on the fitted ellipse. In this case, the contour is
ignored and not further processed.

e) Finally, the ellipse is intersected with the edges, and
the ratio of the number of pixels in the intersection to
the number of all the pixels in the ellipse is calculated:

EllipseOverlap =
|Ellipse ∩ Edges|

|Ellipse|
, (2)

where |·| is used for the number of pixels. A low result
means that a significant portion of the ellipse does not
correspond to any contours in the image. The reason
that the ellipse is intersected with the edge image
instead of only its constructing contour is that due to
noise or imperfect contour detection step, sometimes an
ellipse is broken into two or more contours (e.g., the
cases like Fig. 1(c)). In these cases, checking the ellipse
against a single contour will give a low ratio and results
in false negatives. To take care of the cases similar
to Figure 1(e), it is essential to count only the ellipse
pixels that are actually lying in the image; otherwise,
the result will be too low, and a partially viewed ellipse
may get rejected. Additionally, to make the algorithm
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more robust to slightly imperfect ellipses, increasing
the edges’ thickness before intersecting them with the
ellipse is beneficial.

f) If an ellipse is not rejected in the previous steps, it
represents a real ellipse in the image and is added to
the set of detected ellipses.

4) Due to the target ellipse’s thickness, there is a chance of
detecting two or more concentric ellipses. Therefore, the
returned set of detected ellipses in the frame is further
processed to find the concentric ellipses. All the non-
concentric sets of ellipses are ignored when this happens.

The proposed algorithm can also detect the ellipses with
partial occlusion or the ellipses exceeding the image bound-
aries. The rejection criteria can be chosen in a way to accept
ellipses in such cases.

Choosing higher rejection criteria for ellipse detection gen-
erally helps to eliminate potential false positives. Therefore,
it is beneficial to have higher rejection thresholds when there
is no prior information about the pattern location and size in
the image. However, after the first detection of the elliptical
pattern, it is possible to change the initial parameters and
conditions for the detection to enhance the performance and
increase the detection rate. Decreasing the detection threshold
values reduces the probability of losing the target ellipse
in the following frames due to illumination variation, noise,
occlusion, or other changes in the conditions. Additionally,
if the approximate movement of the target is known, setting
the region of interest (ROI) to the area where the pattern is
expected to be seen will decrease both the processing time and
the probability of falsely detecting other similar shapes that
were rejected in the initial frame due to the higher thresholds.
Furthermore, whenever the detected target is large enough
to be detected in the input frame with a smaller scale, the
frame can be scaled down to increase the processing speed.
Performing ellipse detection on the smaller frame takes less
CPU time and is much faster.

We propose these steps that can be combined with the
ellipse detection algorithm to track the detected elliptic pattern
in the next frames more efficiently:

1) Significantly decrease the ContourOverlap and
EllipseOverlap threshold values. This threshold change
increases the detection rate and helps the algorithm to
keep tracking the target.

2) Determine the region of interest, which includes the current
detected target and expands in all directions based on the
distance from the target, the robot’s relative speed and the
pattern, and other available information. For example, if the
distance is far and the relative linear and angular speeds are
low, the target is expected to be found close to the current
detection coordinates in the next frame.

3) Decreasing the scale of the frame by order of two (up until
a set threshold) every time that the detected target is larger
than a specified size and scaling the frame up again by
order of two (up to the actual frame scale) every time the
detected target is smaller than a chosen threshold. To make
the approach more robust, ellipse detection with initial
higher parameters is performed once again on a higher

TABLE I: Ellipse Detection parameters chosen for the tests
on the AirLab Elliptic Target Detection Dataset.

Parameter Value Justification
ContourOverlap for detection 0.95 To prevent False Positives.
ContourOverlap for tracking 0.7 To enhance target tracking.
EllipseOverlap for detection 0.95 To prevent False Positives.
EllipseOverlap for tracking 0.3 To enhance target tracking.

scale if no candidate targets are found on a lower scale. The
scale change is performed to reduce the execution time, as
the algorithm needs to process only a quarter number of
pixels every time it scales the frame down.

Algorithms 2 and 3 show the described method in more
detail.

III. EXPERIMENTS AND RESULTS

A. Elliptic Target Dataset and Parameter Selection

We created a dataset with sequences recorded using a UAV
from a stationary and moving vehicle carrying an elliptical
platform at various distances, angles, and illumination condi-
tions. The dataset contains 1,511 frames (1,378 positive and
133 negative frames) and 456 frames of a thinner version of
the same pattern. The size of the frames is 640×360, and the
ground truth for the detections is provided. The dataset can be
accessed from http://theairlab.org/landing-on-vehicle.

The thresholds selection of the proposed ellipse detection
algorithm depends on the tolerance for false positives vs. false
negatives in the application. However, in practice, the detection
is not too sensitive to the parameters in most cases, and they
can be selected from a broad range. For our tests on the AirLab
Elliptic Target Detection Dataset, we empirically chose the
values shown in Table I. The GUI tool provided with the code
helps with the calibration process letting the user see the pa-
rameters’ effects in real-time. The ellipse detection parameters
are independent of the lighting conditions. Therefore after a
one-time calibration, the algorithm should detect the pattern
in a wide range of weather conditions (e.g., sunny, cloudy,
snowy) as long as the light is enough for the camera to capture
the pattern.

In order to assess the sensitivity of the algorithm against the
thresholds, Figure 2 shows the performance of the algorithm
for different values of ContourOverlap with the value of
EllipseOverlap fixed to 0.7. Additionally, Figure 3 shows
the performance of the algorithm for different values of
EllipseOverlap with the value of ContourOverlap fixed to 0.5.

Let us define NTP , NFP , NTN , NFN , NAll, and NWD as
the number of True Positive detections, False Positives, True
Negatives, False Negatives, the total number of frames and the
number of frames with visible targets where the detection was
wrong. The measures in the plots are defined as follows using
the five outcome types above.
• Accuracy measures the ratio of all the frames that the algo-

rithm gives the correct result (either the target is detected
correctly or no target is detected in a frame without a target).
It is defined as (NTP +NTN )/NAll.

• Precision measures what ratio of all the target detections is
actually correct. It is defined as NTP /(NTP+NFP+NWD).
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Algorithm 2 Proposed approach for elliptic target tracking

1: . This function reads the frames from a video stream and
performs tracking of a target

2: function TRACKTARGET(videoStream)
3: . Set frame scale, ROI and tracking status
4: isTracking ← false
5: scale ← 1
6: roi ← ∅
7:
8: while videoStream 6= ∅ do
9: frame ← READFRAME(videoStream)

10: . Detect the ellipse in the frame or ROI
11: if isTracking = false then
12: offsetTarget ← DETECTTARGET(frame, scale)
13: else
14: offsetTarget ← DETECTTARGET(roi, scale)
15: end if
16:
17: if offsetTarget = ∅ and scale > 1 then
18: . If target not found, try on higher frame scale
19: scale ← scale ÷ 2
20: if isTracking = false then
21: offsetTarget ← DETECTTARGET(frame, scale)
22: else
23: offsetTarget ← DETECTTARGET(roi, scale)
24: end if
25: else
26: . If found, set the proper scale for next frame
27: isTracking ← true
28: if offsetTarget.size > maxTargetSize then
29: if scale < maxScale then
30: scale ← scale × 2
31: end if
32: else if offsetTarget.size < minTargetSize then
33: if scale > 1 then
34: scale ← scale ÷ 2
35: end if
36: end if
37: end if
38:
39: . Compensate the target offset resulted from detec-

tion in ROI. Do nothing if ROI is null
40: target ← COMPENSATEOFFSET(offsetTarget, roi)
41:
42: . Set the tracking status and ROI for the next frame
43: if target = ∅ then
44: isTracking ← false
45: roi ← ∅
46: else
47: isTracking ← true
48: . Expand the area around the detected target
49: roi ← CALCULATEROI(target)
50: end if
51:
52: return target
53: end while
54: end function

Algorithm 3 Proposed approach for elliptic target detection
in a given frame scale

1: . This function detects the target in the input frame at the
specified frame scale

2: function DETECTTARGET(frame, scale, isTracking)
3:
4: . Resize the frame to make the processing faster
5: scaledFrame ← SCALEIMAGE(frame, 1 / scale)
6:
7: . Set detection parameters based on inputs
8: thresholds ← DETERMINEPARAMS(isTracking, scale)
9:

10: . Detect ellipses using the specified thresholds
11: detections ← DETECTELLIPSES(scaledFrame, thresh-

olds)
12:
13: . Select the actual target from the detected ellipses
14: scaledTarget ← SELECTTARGET(detections)
15:
16: . Rescale the detected target to original scale
17: target ← SCALESIZE(scaledTarget)
18:
19: . Return the detected target (or ∅ if not detected)
20: return target
21: end function

• Recall or sensitivity measures the ratio of all the frames
containing targets that are correctly detected. It is defined
as NTP /(NTP +NFN +NWD).

• F1 Score is the weighted average of precision and recall and
takes both false positives and false negatives into account.
F1 Score is defined as 2×(Recall×Precision)/(Recall+
Precision).
It can be seen that increasing the value of ContourOverlap

up to some point generally decreases the number of false
results (both false positives and false negatives) and therefore
increases the number of correct results and statistical measures.
Although, after some point, the number of detections (true or
false positives) starts dropping, and the performance slowly
decreases. Additionally, the higher ContourOverlap results
in more candidate contours being eliminated before further
processing, reducing the algorithm’s execution time.

On the other hand, the value of EllipseOverlap has a smaller
effect on performance and execution time, slightly improving
the performance up to a point. If it is set too high, the
algorithm starts rejecting more ellipses, causing a drop in
the number of positive results, significantly decreasing the
algorithm’s performance.

The choice of other parameters in the algorithm depends on
the application. For example, when the pattern is not expected
to be far, setting a higher number for minContourSize will
improve the speed by eliminating the contours that cannot
belong to the elliptic pattern. On the other hand, setting this
parameter too high can result in false negatives when the
pattern is seen partially or consists of several partial contours.
In practice, however, the method has shown to be rather
insensitive to these parameters, and generally, there is no need
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(a) (b)

(c) (d)

Fig. 2: Performance and execution times of our algorithm vs.
contour overlap threshold (ContourOverlap parameter). The
value of EllipseOverlap is fixed to 0.7 for all the experiments.
Wrong Positives are the wrong detections when the target was
present in the frame. (a) Accuracy, Recall, and F1 Score of the
algorithm increase with the increase of ContourOverlap up to a
point. (b) Increasing ContourOverlap increases the number of
True Negatives while may result in fewer True Positives after
some point. (c) Increasing ContourOverlap results in a lower
number of False Positives and Wrong Detections, while it may
result in an increase of the number of False Negatives after
some point. (d) The execution time decreases by increasing
the ContourOverlap parameter.

to change the default values. In all our tests, we have used
the following values: mnAxSize = 5, mxAxSize = 700,
maxAxisRatio = 5, minContourSize = 50, maxScale =
100.

B. Comparison With Other Methods

To compare the performance of our algorithm with other
methods, we ran four other methods on the dataset introduced
in Section III-A: the MATLAB implementation of a Hough
Transform-inspired approach proposed by Xie & Ji [33] with
a random sub-sampling inspired by the work in [34], and the
C++ implementations of the methods proposed by Fornaciari
et al. [19], Prasad et al. [35], and Jia et al. [27]. Table II shows
the results and performance of the algorithms on our dataset.

The results show that our implemented algorithm outper-
forms the other methods in all the criteria. The method by
Xie & Ji’s [33] was unable to perform well on the real frames
of our test environment due to the relatively low resolution
of our frames and the small size of the target in the frames;
the few cases it could detect the elliptic target were when the
target was covering a large portion of the frame. The main
problem with the method by Fornaciari [19] was that it was

(a) (b)

(c) (d)

Fig. 3: Performance of our algorithm vs. ellipse overlap thresh-
old (EllipseOverlap parameter). The value of ContourOverlap
is fixed to 0.5 for all the experiments. (a) Accuracy, Recall,
and F1 Score of the algorithm very slowly increase with the
increase of EllipseOverlap up to a breaking point, where they
suddenly drop. (b) Increasing EllipseOverlap increases the
number of True Negatives while reducing the number of True
Positives after a certain point. (c) Increasing EllipseOverlap
results in a lower number of False Positives, while it may
result in an increase of the number of False Negatives after
some point. (d) The execution time generally decreases by
increasing the EllipseOverlap value.

TABLE II: Performance of the ellipse detector meth-
ods on the AirLab Elliptic Target Detection Dataset.

Method Accuracy? Precision? Recall? F1 Score?

Ours 96.56% 99.77% 96.44% 0.981
[33] 3.64% 3.64% 3.99% 0.038
[19] 88.75% 99.67% 87.66% 0.933
[35] 89.81% 99.45% 90.22% 0.965
[27] 78.36% 95.50% 80.04% 0.871

? As defined in Section III-A.

unable to detect the elliptic targets when more than 25% of
the target was outside of the frame (case (e) in Figure 1). The
method by Jia et al. [27] is comparatively fast but has a high
false positive rate and is unable to detect the ellipses when
they are far away (small in the frame). Prasad’s method [35]
has comparable performance to Fornaciari’s but is significantly
slower. At the same time, our proposed algorithm was fast
and still able to detect the target’s elliptic pattern in partial
views or when it was small. Additionally, we should note that
all the false positive cases of our algorithm on the dataset,
detected elliptical drawings on the ground, which would have
been rejected if the UAV’s altitude information was used.

Figure 4 shows results for the detection of the elliptical pat-
tern in some sample frames from the dataset. The method by
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(a) (b)

(c) (d)

Fig. 4: Result of the proposed algorithm on sample frames.
The red ellipse indicates the detected pattern on the deck of
the moving vehicle.

Fornaciari et al. is unable to detect the ellipses in Figure 4(a)
and Figure 4(d).

Table III compares the execution times of the ellipse detec-
tion methods on the same dataset (using Intel Core i5-4460
CPU @ 3.20 GHz). The implementation of Xie & Ji’s method
is done in MATLAB, which gives much higher execution
times than C++ implementations. Therefore we excluded it
from Table III. Fornaciari et al. method has similar average
execution times to our algorithm. However, their approach
provides slightly more consistent execution times, which can
be convenient for control systems using the detection output
for robot control. On the other hand, our method’s speed
significantly increases (with frame processing time going down
to just a few milliseconds) when the robot gets closer to
the target pattern. This increase in speed especially helps the
system to have a much higher detection rate when a higher
processing speed is needed for the robot to approach the
moving vehicle for landing.

C. Example Application

To test the proposed ellipse detection and tracking method’s
performance, it was used with a visual servoing method for
an autonomous UAV landing on a circular pattern painted
on top of moving platforms in indoor, outdoor, and sim-
ulated environments [36]. Figure 5 shows screenshots of
the method in these different lighting conditions. Videos for
these experiments and the project details can be accessed at
http://theairlab.org/landing-on-vehicle.

IV. FUTURE WORK AND DISCUSSION

The proposed ellipse detection and tracking algorithm has
shown its performance in an example application and has out-
performed other standard methods in our tests. However, the
proposed method has mainly been tested on a set of elliptical
patterns used in our current and prior research. Utilizing the
method for other applications may require further testing and
improvements. The following suggestions can further enhance

(a) (b)

(c) (d)

Fig. 5: Screenshots from video sequences showing our au-
tonomous UAV landing on a pattern moving at up to 4.2 m/s
speed in various lighting and environmental conditions.

the performance and increase the method’s usability in real-
world robotics applications.

The underlying algorithms used in the ellipse detection
steps are the most common methods already available in the
OpenCV library. The choice has been made to allow fast
implementation by the potential reader and convenience. If
better performance is required, the whole method’s execution
speed and performance can be improved by replacing steps
such as ellipse fitting with faster and better algorithms.

Finally, if the robot’s camera is not perfectly rectified, it
may lose track of the elliptic target at close distances where
only a small portion of the pattern is visible at such a skewed
angle that it causes the circle to be seen as non-elliptic in the
camera. The problem exists for any ellipse detection algorithm
but can be improved using a robust tracker (such as Kernelized
or Discriminative correlation filters) instead of a detector to
track the target ellipse when the robot’s camera is too close
to the elliptical pattern.
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