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Abstract— This paper presents a path optimization solution
for an autonomous aerial robot (aerobot) in the windy at-
mosphere of Venus. The aircraft is required to travel from
its current position to a goal position by following minimum
energy paths. The approach proposed in this paper uses genetic
algorithms, a heuristic search that, based on a population
of initially feasible paths and a set of biologically inspired
operations, finds a low-cost path. The proposed cost function
accounts for energy expenditure, such as thrust or drag,
and also energy accumulation, such as charging with solar
panels and gains from potential energy (e.g., due to upward
directional winds). Path feasibility is assured by computing
local reachability regions based on the wind velocity and the
maximum speed of the aerobot. The method is illustrated
through a series of simulations that show our results as a
function of the number of iterations and path population sizes.
A comparison with a previous algorithm is also made.

I. INTRODUCTION

Venus has geophysical characteristics comparable to those
on Earth, such as composition, gravity, mass, and radius.
Researchers believe that Venus, two billion years ago,
could have had oceans and a livable atmosphere, similar
to Earth’s [1]. Past explorations in Venus concluded that
the planet has changed drastically due to the greenhouse
effect, which may have turned its surface into a hot and
inhospitable place [2]. Venus has a surface temperature
around 450 ◦C, more than the melting point of lead, and
a pressure around 93 bar [3], which complicates the de-
ployment of scientific missions in the surface and lower
atmosphere.

However, studying Venus is valuable because it can extend
the understanding of the planetary and climate evolution
of our own planet Earth. One of the missions proposed
to study Venus consists of deploying a semi-buoyant un-
manned propelled aerobot [4]. It will have an aeroshell-
less hypersonic entry and will then transition to a semi-
buoyant, maneuverable, solar-powered aerobot that will fly
between 50 km and 70 km of altitude above the Venusian
surface, where the atmospheric conditions are similar to
Earth’s [5] and where scientists found evidence of the pres-
ence of phosphine, a substance that suggests the existence
of organic life-forms [6], [7].
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Fig. 1: Initial random population of paths used by the pro-
posed genetic algorithm path planner. Each color represents
a path and black dots are the waypoints points of each path.
The green and red dots are the start and goal positions,
respectively. Purple cones show the feasible regions of each
waypoint of the purple path. This is a function of the wind
(gray arrows) and the vehicle speed. Feasible paths are paths
where each waypoint is inside the feasibility region of the
previous one.

Our goal is to develop an optimal motion planner for an
aerobot in Venus that 1) creates minimum energy cost paths,
that allow the vehicle to fly for long periods of time without
running out of battery; 2) accounts for in-flux and out-flux
of the battery to determine battery level; and 3) accounts for
the strong winds present in the area of exploration, which is
faster than the aerobot’s maximum airspeed.

Some previous works solved similar problems on earth.
In [8], [9], a tree-based kino-dynamic motion planner consid-
ering the wind was developed for a fixed-wing aircraft with
temporal and spatial changes in the wind field. This work did
not consider energy expenditure with the propulsive system
or any sort of charging with solar panels. Additionally, the
authors assume that the aircraft’s velocity relative to the wind
is larger than the wind velocities, which is not the case in
our problem. In our previous work, we proposed a sampling-
based planner to find energy-efficient paths to navigate in the
atmosphere of Venus [10], where the wind velocities cannot
be compensated by the aircraft. However, the winds were
only considered indirectly, deforming the local Dubins paths
between nodes of the graph constructed. While guaranteeing
feasibility, our previous work was not able to find optimal
paths, which motivated the current work. Besides searching
for optimal paths, the Genetic Algorithm method used in
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this work resulted in a more efficient and easy-to-implement
algorithm, when compared to [8], [9] and [10].

In this paper, we present a sampling-based genetic al-
gorithm path planner for a fixed-wing aerobot under the
influence of the strong winds of Venus. The motion planner
optimizes a cost function (fitness function) based on in-flux
and out-flux of energy. This cost function, proposed in our
previous work [10], accounts for the expenditure of energy,
such as thrust or drag, but also energy accumulation, such as
charging with solar panels and gains from potential energy
(e.g., upward directional winds). It is important to note
that the naive inclusion of such in-flow energy might result
in negative costs when calculating the energy cost of the
path, which would contradict most optimizers’ criteria [11].
We then employ the concept of “opportunity cost” [12] to
account for the loss of gain generated by failing to pursue
the most beneficial path. In order to calculate the energy
cost from the solar panels, we account for the altitude that
the aerobot is flying, being 70 km above the surface the
maximum gain of energy in our environment and 55 km
the less favorable altitude, where the different cloud layers
attenuate the solar intensity [13]. Besides finding low-cost
paths in three dimensions (3D), our method also guarantees
the feasibility of the paths by using the wind speed and
the maximum aerobot velocity to compute local feasibility
regions for each waypoint of the path. An illustration of the
path feasibility strategy used in the paper is shown in Fig. 1.

Therefore, the main contributions of this paper are:
1) A genetic algorithm-based path planner that finds

energy-efficient paths for an aerobot that i) accounts
for path constraints due to wind, ii) includes the energy
model of the semi-buoyant aerobot, and iii) includes
Venusian atmospheric conditions.

2) A method for generating feasible paths in 3D windy
environments using random sampling inside the reach-
able region defined by the local wind vector and the
vehicle’s maximum airspeed.

The rest of this paper is organized as follows. Problem
definition and background are presented in Sect. II and III,
respectively. Our heuristic approach is explained in Sect. IV.
Then, numerical results are presented in Sect. V. Finally,
conclusions and future work are presented in Sect. VI.

II. PROBLEM DEFINITION

This section provides the information that is relevant to de-
scribe the problem solved in this paper. A genetic algorithm
(GA) was developed to find an optimal path for an aerobot
in the atmosphere of Venus. We provide environmental and
vehicle models that are necessary to constrain the algorithm.

A. Problem Statement

In this work, the desire is to move an aerobot from the start
position, pstart, to the goal position, pgoal, in the atmosphere
of Venus, where strong winds are present, with the lowest
energy consumption possible while avoiding running out of
battery power. Each coordinate of the aerobot is represented
in the three-dimensional space by (x, y, z), where x and y

represent latitude and longitude respectively and z represents
the altitude. Specific constraints and assumptions about the
environment and the aerobot are discussed in the next
subsections.

B. Environment

The flyable region of exploration for an aerobot in the
Venusian atmosphere is within 55 km and 70 km of altitude
with respect to its surface. In this region, Venus has similar
climate conditions as the ones on Earth. The air density,
ρ(z), gravitational acceleration, g(z), pressure, p(z), tem-
perature, Θ(z), and wind field, w(x, y, z), can be obtained
from data tables presented in [10]. These tables provide
simplified models of the atmosphere, using data from several
past missions to Venus [3], [14]. For simplicity, all the
variables mentioned before are assumed to be time-invariant.
Furthermore, the wind field is assumed to be dominated
by the super-rotation winds, compatible with the equatorial
region observations [15]. As a summary, two main points are
important in the Venusian atmosphere: (i) the farther from the
surface the lower the density, temperature, and pressure; (ii)
the strong winds range from 61±25m/s at lower altitudes to
94±30m/s at higher altitude. Graphs and tables illustrating
this behavior can be found in our previous paper [10].
The last environmental factor included in our problem is
the solar intensity (Isolar(z)) which provides power to the
aerobot by charging the batteries. Venus provides a solar flux
almost double as Earth’s, being its exoatmospheric solar flux
2600W/m2. However, due to the dense clouds present in the
exploration region, the available solar intensity varies with
the altitude. The ratio of available solar intensity is 95% at
the higher flyable region (65 km) and between 20 and 50%
at lower altitudes (40 km). A model for the solar intensity in
the Venusian atmosphere is also shown in [10].

C. Aerobot

This paper considers an aerobot based on the concept
proposed in [4]. A 3D visualization of this concept is shown
in Fig. 2. The vehicle is a semi-buoyant unmanned propelled

Fig. 2: Aerobot deployed in the Venus clouds. The back-
ground of this image was created with the assistance of AI.
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Fig. 3: Structure followed to design the implemented genetic
algorithm described in Sect. IV.

airship. The aircraft is filled with hydrogen, which gives it a
lightweight design and provides buoyancy. At 55 km above
the surface the vehicle is 100% buoyant, while at 70 km
it is expected to be 10% buoyant. The aerobot has, in the
top part of its wings, solar panels which supply energy to
the batteries. Lastly, the aircraft airspeed ranges from 0 to
30m/s. A more detailed explanation of the main design
parameters can be seen in the previous paper [10]. In this
work, we consider that the aerobot can turn rapidly compared
to the large distances it travels, therefore, we consider that
it is sufficient to represent the trajectory into a piece-wise
linear path.

III. BACKGROUND

A. Genetic Algorithms

In this paper, Genetic Algorithms (GA) are applied to
solve the problem defined in the previous section. Genetic
algorithms are often used for parameter selection and perfor-
mance optimization of a system, but in this paper, they will
be used to find the best path between two coordinates in a 3D
windy environment. GAs are inspired by the biological world
and are modeled after Darwin’s theory of evolution [16],
[17]. They use a survival of the fittest procedure to solve
computational problems and iteratively search for the global
optimal solution. An important feature of GAs is that it pro-
vides tools to balance exploration and exploitation, making
it possible to obtain a globally optimal solution instead of
falling into local optima.

As shown in Fig. 3, GAs begin with the selection of
an initial population of i individuals which are possible

solutions to the problem. Each individual is made up of
different genes, which represent the design parameters [18].
In each iteration, also referred to as generation, the GA
simultaneously evaluates all individuals against a fitness
function. The fitness function is used to determine how well
an individual performs in the environment represented by the
design requirements and constraints. Individuals with higher
fitness functions usually get higher chances to survive in the
next generation.

At the end of each generation, a selection or reproduction
mechanism is applied to choose the individuals that survive
into the next generation. When the individuals reproduce,
they create a new possible solution, their offspring, by
undergoing genetic alterations [19]. Possible genetic oper-
ators are mutation and crossover. The selection of the GA
parameters and the fitness function has a high impact on the
efficiency of the GA and the balance between exploration and
exploitation. For example, if there are only a few individuals
in a population or the individuals undergo only minor, low-
impact changes (e.g. in mutation), exploitation is favored,
which might lead to quick convergence towards a local
extremum [20]. If, however, the population is very large and
genetic operations are very aggressive (e.g. in crossover),
exploration is favored, which can lead to loss of obtained
information and increased computational effort [21].

B. Flying with strong winds

In our problem formulation, we assume winds up
to 90m/s and a maximum aerobot speed of 30m/s relative
to the wind. Evidently, the vehicle cannot compensate for the
wind and is mostly carried away, even if it is heading directly
against it. This situation, which occurs when the current
velocity is greater than the vehicle’s relative velocity to the
current, leads to unreachable regions [22]. To guarantee the
feasibility of the paths generated by the GAs, we included a
restriction on the generation of waypoints. A path between
two waypoints, (xi, yi, zi) and (xi+1, yi+1, zi+1), is valid if
it is inside the cone, shown in Fig. 4 and defined by the
angle βmax. The cone angle, as formulated by [22], can be
obtained from

cos (βmax) =

√
∥c⃗∥2 − v2max

∥c⃗∥
, (1)

where c is the velocity of the wind at the parent waypoint,
(xi, yi, zi), and v is the vehicle’s maximum speed relative to
the wind. Here we consider that the wind field is constant in
the proximity of the parent waypoint.

IV. METHODOLOGY

We propose the use of GAs to solve the problem stated in
Section II. For this, the next subsections define each block of
Fig. 3. A pseudo-code of the proposed method can be seen
in Algorithm 1.

A. Initial Population

In order to create an efficient-optimal genetic algorithm,
the creation of the initial population (P ) is an important
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Reachable 
region

Fig. 4: Reachability cone computed in the function of the
wind and vehicle speeds.

Algorithm 1 Energy and Wind Aware Genetic Algorithm for
Path Planning

1: function [σ∗, cost∗] = MAIN(G)
2: P ← InitialRandomPopulation(G)
3: for g = 1 to G.Ng do
4: for i = 1 to G.Ni do
5: C(i)← 0
6: for s = 0 to G.Ns + 1 do
7: ps ← GetGenes(P (i), s)
8: ps+1 ← GetGenes(P (i), s+ 1)
9: cost(s)← Cost(ps, ps+1)

10: if cost(s) =∞ then
11: C(i)←∞
12: break
13: end if
14: C(i)← C(i) + cost(s)
15: end for
16: end for
17: P ← Selection(G,P )
18: P ← Mutation(G,P )
19: P ← Crossover(G,P )
20: P ← NewRandomIndividuals(G,P )
21: end for
22: (σ∗, cost∗)← BestIndividual(P )
23: end function

step [23]. In our case, all the paths created in the initial
population (parametrized by G.Ni Algorithm 1) are feasible
and with the number of waypoints, being the same and
defined by G.Ns. Individuals with G.Ns waypoints are
generated from start to goal until all waypoints are feasible,
as seen in Algorithm 2. Each individual (P (i)) is formed by
start position, waypoints (s), and goal position, giving each
of those a gene per each coordinate, such that coordinates
(x, y, z) would form a total of 3 genes, as shown in Fig. 5.
The InitialRandomPopulation() function in Algorithm 2
creates the initial population (P ), where all the generated
paths are considered unfeasible (line 4 of Algorithm 2),
until proven otherwise. Each waypoint of the path (Ns),
except for the last one (goal), is created randomly inside
the feasible region, generated with the function Cone().

Start Point Waypoint 1 Goal Point

Genes

Individual with
Ns  Waypoints

Waypoint 2 Waypoint Ns

Fixed
Gene

Variable
Gene

Fig. 5: Each path individual is formed by a start position,
Ns waypoints, and a goal position, each formed by (x, y, z)
coordinates.

Algorithm 2 Initial Random Population Generation with
Accessibility Cone Restriction

1: function P = INITIALRANDOMPOPULATION(G)
2: P ← ∅
3: for i = 1 to G.Ni do
4: feasible← False
5: while feasible = False do
6: P (i)← CreateIndividual(G, i)
7: (xo, yo, zo)← G.pstart
8: for s = 1 to Ns do
9: c⃗←WindField(xo, yo, zo)

10: (x, y, z)← Cone(G, c⃗, (xo, yo, zo))
11: (x, y, z)← Constrain(G, (x, y, z))
12: P (i)←WriteGenes(P (i), s, (x, y, z))
13: (xo, yo, zo)← (x, y, z)
14: end for
15: if InCone(G.pgoal, c⃗, (xo, yo, zo)) then
16: feasible← True
17: end if
18: end while
19: P ← P ∪ P (i)
20: end for
21: end function

After that, Constrain() function places the waypoint in-
side the environmental dimensions. Afterward, the waypoint
(s) is stored in the corresponding individual (P (i)). Then,
the InCone() function, checks for goal position, G.pgoal,
feasibility (x and z are always feasible due to the limits
established at the beginning) and if y is inside the cone
region, then, the path, including the start and goal position,
is feasible (line 16 of Algorithm 2). If in the end, the path is
still not feasible the function dismisses the path (P (i)) and
searches for another one until the path is feasible (line 5 of
Algorithm 2).

B. Fitness Function

Our proposed fitness function, Cost(), is based on the
energy exchanges of the aerobot when it travels from the
start to the goal position so that the optimal path would be
the one with less energy consumed. This energy is calculated
by accounting for different sources of energy that the aerobot
consumes or generates: energy consumed by the propellers,
accumulated potential energy, and energy generated by solar
panels. The cost of the path C(i), as shown in line 14 of
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Algorithm 1, is the addition of the costs, cost(s), to go from
one waypoint (ps) to another (ps+1) until the goal is reached
(s = G.Ns+1). The energy-based cost function is proposed
in our previous work as [10]:

C =

{
Eprop + Eopp

pot + Eopp
solar if b+∆b ≥ 0

∞ if b+∆b < 0
(2)

where Eprop is the energy consumed by the propellers, Eopp
pot

is the potential energy, Eopp
solar is the energy produced by the

solar panels, and ∆b is battery change, computed as:

∆b = −Eprop + Esolar. (3)

If during the calculation of the energy cost of the waypoint
(cost(s)), the battery percentage, b, is lower than zero, b < 0,
(which means that the aerobot runs out of battery), then we
consider the path cost (C(i)) to be infinity.

The energy consumed by the propellers, Eprop, is based on
the integration of the instant power, Pprop = T · va, required
by the propellers considering the efficiency of the propellers
ηprop and shaft ηshaft:

Eprop =

∫
T · va

ηprop · ηshaft
dt (4)

where T is thrust and va is the aerobot velocity.
The complement of the potential energy is computed as:

Eopp
pot = Emax

pot − Epot = m · g · (hmax − h) , (5)

where m is the mass of the aerobot, g is the gravity in
Venus (approximately 8.87m/s2) at height h of the aerobot.
Notice that, to avoid negative energy, the potential energy
is computed as the difference between maximum potential
energy (computed at the highest possible altitude hmax =
70 km) and the current potential energy.

The complement of the solar energy generated by solar
panels is calculated as:

Eopp
solar = Emax

solar − Esolar =

∫
(Pmax

solar − Psolar) dt . (6)

where the solar power is found by Psolar = Isolar · ηpanels ·
Apanels that accounts for available solar intensity, Isolar,
solar panel efficiency, ηpanels, and solar panel area, Apanels.
In the Venusian atmosphere, the maximum power absorption
of the solar panels, Pmax

solar, is 560W/m2 which happens
when the aerobot is at its highest altitude.

C. Selection

Once, the evaluation of each individual (C(i)) is done
(using the fitness function), it is time for the selection of the
population (line 17 of Algorithm 1). In this work, we are
considering two different selections. The first one is the Eli-
tist Selection, which selects the number of best individuals,
G.nb, to survive unchanged to the next generation [24]. The
second one is the Rank Selection which ranks each individual
based on their score in the fitness function, in this case, based
on the lower energy from start to goal C(i). After being

ranked, each individual is assigned a probability of survival
given by

probi = q − (Ni − 1)r , (7)

with q = 2/Ni and r = 2/(Ni(Ni − 1)), where q is the
maximum selection pressure, meaning that the one with the
largest energy path consumption has 0 chances of surviving
to the next generation (G.Ng). Ni is the number of individu-
als in the population, and r is the amount by which the score
of each individual in the rank decreases.

D. Mutation

Once the individuals are selected, then, they go through
the first genetic alteration [24], called a mutation, line 18
of Algorithm 1. Mutation consists in changing a random
number of genes in each individual. These genes will
be mutated individually by adding or subtracting a value
between the maximum (“Max. Mutation” parameter) and
minimum (“Min. Mutation” parameter) range established
as input parameters of the algorithm. Then, the selected
population will return to the main one (P ) to proceed with
the crossover.

E. Crossover

A number of individuals in the population are selected
based on the input parameter “Crossover” (line 19 of Algo-
rithm 1). In our implementation double crossover is used
instead of single crossover to improve exploration, since
more possibilities for different individuals can happen. The
double crossover consists in selecting two individuals and
taking two random genes from one of them, then taking the
same genes from the second one and swapping the gene
values of all of the genes compressed between the chosen
two [25]. This alteration helps in exploiting part of the
individual but also exploring a different part of the individual
path to see if an improvement in the energy cost spent is
possible in the next generation.

F. New Random Individuals

Finally, the last genetic alteration (line 20 of Algorithm 1)
before we evaluate the new population (P ) consists in adding
G.Nr new random feasible individuals using a procedure
similar to the generation of the initial population in Algo-
rithm 2. These individuals are added to the population by
substituting the paths with the worst fitness function, in our
case, the individuals with the largest energy consumed to
travel from start to goal positions.

G. New Population

Lastly, the function NewRandomIndividuals() takes all
the individuals (P ), after the selections and genetic alter-
ations made in the previous subsections, and creates a new
population that will go through the same process as the one
described above but starting from the fitness function which
will evaluate the energy cost (C(i)) of the new individuals
(line 14 of Algorithm 1). This process is done multiple times
based on the parameter “N. of Generations” (G.Ng) or until
a certain given time is reached.
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TABLE I: Genetic Algorithm Parameters

Parameters Values

Population Size 80 individuals
New Rand. Individuals 6 individuals
Crossover 40 individuals
Mutation 40%
N. of Generations 100 generations
N. of Best Individuals 2 individuals
Max. Mutation 1000m
Min. Mutation −1000m
Min. Range (0,−10, 5.5)× 104m
Max. Range (30, 10, 7)× 104m
Start Position (0, 0, 5.5)× 104m
Goal Position (30, 5, 6.8)× 104m
N. of Waypoints 5 waypoints

V. NUMERICAL RESULTS

This section shows the results obtained with the genetic
algorithm described in the previous section. Our results
illustrate the capability and efficiency of the algorithm when
finding optimal paths for an aerobot in the atmosphere
of Venus. The proposed algorithm was implemented in
MATLAB® and run on a MacOS computer (MacBook Pro
2023, Processor M2 Pro, 10 cores, 36 GB RAM).

A. Algorithm Evaluation

Several trials were performed with the parameters in
Table I to demonstrate the consistency of the algorithm
designed. We can observe that in all of the results, such
as the ones in Fig. 6 and 8, the planned path tends to move
in high altitudes to allow the aerobot to recharge its battery,
and then descends to reach the goal. We notice, by running
the code more than 50 times, that the running time and
energy cost were similar to each other with an error smaller
than 3%, which only is due to the randomness of the initial
population. Furthermore, different start and goal positions
were tried. Fig. 6 shows the paths with different start and goal
positions that explored low and high altitudes, positive and
negative longitudes, and different positive latitudes. The start
and goal for the blue path are, respectively, (0, 0, 5.5)×104m
and (30, 5, 6.8) × 104m. For the yellow path, they are
(0, 0, 5.5)× 104m and (30,−7.5, 6.8)× 104m, for the green
path, (2, 0, 6.8) × 104m and (30, 0, 5.8) × 104m, for the
purple path, (1.5, 6, 6.5) × 104m and (27, 0, 6.5) × 104m,
and, finally, for the red path they are (0, 2.5, 5.7) × 104m
and (30, 6, 7) × 104m. Other trials were done for a larger
number of waypoints (G.Ns), resulting in paths with similar
costs as the ones with fewer waypoints. The only difference
was the time performance of the algorithm which increases
as the number of waypoints increases.

After consistency was proven, trials with different parame-
ters were performed in order to find the right balance between
exploration and exploitation. The parameters were chosen to
be modified where “Population Size” (G.Ni), “New Rand.
Individuals” (G.Nr), and “N. of Generations” (G.Ng), that
took values from 60 to 90 individuals in steps of 10, from 0 to
30 individuals in steps of 5, and from 60 to 200 generations
in steps of 20, respectively. A summary of the best and
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Fig. 6: Best individual (optimal path σ∗) throughout the
generations of the GA for different start and goal positions.

TABLE II: Genetic Algorithm Performance

Energy Time Population New Random Number of Computational
Cost [J] Cost [s] Size Individuals Generations Time [s]

1.304× 108 2645.1536 80 0 140 3.079
1.306× 108 2620.1813 90 15 180 4.703
1.306× 108 2626.1648 70 10 180 3.460
1.307× 108 2631.6413 60 5 180 3.065
1.307× 108 2633.5233 90 5 180 4.819
1.647× 108 2693.3236 70 20 80 1.673
1.662× 108 2652.5313 80 20 80 1.892
1.707× 108 2626.6479 60 20 100 1.875
1.712× 108 2608.6214 70 30 100 2.249
1.725× 108 2820.6328 70 25 60 1.296

worst performances based on the energy cost of the path
can be seen in Table II. In this table, aside from the four
columns already mentioned, there are two more columns.
The first one, “Time Cost”, accounts for the aerobot’s time,
in seconds, to travel from the start to the goal position. The
second one, “Computational Time”, represents the time, in
seconds, that the algorithm spent computing the best solution.
Results show that the designed genetic algorithm performs
better when the “N. of Generations” is large and, also, when
“New Rand. Individuals” is not too large (≤ 15). Also, notice
the short amount of time the algorithm takes to run, ranging
from 1 s in short “N. of Generations” and “Population Size”
to 5 s for larger ones. Fig. 7 show the improvement of the best
path (found with the parameters in the first line of Table II)
through the generations.

B. Comparison with an RRT-based Algorithm

In this subsection, we compare the results from the pro-
posed Genetic Algorithm with the results obtained from
the previous work [10]. In our previous work, a sampling-
based planner, the EWRRT, was developed to solve the
same navigation problem solved in this paper. The algorithm
is based on RRT with a local planner that relies on Du-
bin’s Airplane [26] paths. The algorithm is not optimal but
searches for low-cost paths by always choosing connections
that minimize the cost function in (2). The wind is considered
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Fig. 7: Evolution of the best individual (σ∗) based on the path
cost (cost∗) in function of the generations (best of Table II).

indirectly, i.e., the Dubins Airplane paths are created with a
virtual goal and the resulting trajectory is subjected to wind
drift before including in the EWRRT graph. To compare the
performance of the methods, both algorithms were given the
same start and goal conditions: pstart = (0, 0, 5.5) × 104m
and pgoal = (30, 2.5, 6.6) × 104m. The paths generated by
the two algorithms are shown in Fig. 8. The EWRRT’s path
(yellow) was obtained using 2000 samples and a step size
of 1.5 × 104km. The energy cost of the path found was
1.6805×108J, while the path’s time cost was 3.0562×103s.
The path was computed by EWRRT in 61.12 s. While
EWRRT’s parameters are not the same as the ones in the
GA, we tried to make them similar in order to make a
fair comparison. The GA’s path used parameters: 80 for
“Population Size”, 6 for “New Rand. Individuals”, and 1000
for “N. of Generations”. The path found had an energy cost
of 1.3893 × 108J and a path’s time cost of 2.6945 × 103s.
This path was computed in 20.81 s. The paths in Fig. 8, along
with costs and times mentioned, show that GA, with 1/3 of
EWRRT’s computational time, is able to reach a solution
that has a lower path energy cost (cost∗) and a shorter travel
time. Also, different trials show that EWRRT needs a larger
number of samples and a smaller step size to increase the
probability of finding a lower path energy cost, which would
require an even larger computational time.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a Genetic Algorithm-based path
planner designed for aerobot navigation in the Venusian
atmosphere, where strong winds are present. This algorithm
tries to find the optimal path (σ∗) based on a fitness function
that accounts for the energy cost of the aerobot when
traveling from the start to the goal position.

Results show good performance of the algorithm with
trials that do not defer more than 3% from one another,
which reflects that the initial population was created ac-
cording to the needs of the problem. Tests accounting for
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Fig. 8: The feasible path found by the GA is compared
to the feasible path found by EWRRT [10]. The GA path
is piece-wise linear, while EWRRT connects the waypoints
with Dubin’s Airplane paths drifted with the wind.

different parameters were performed to see which would
keep the best balance between exploration and exploitation
of the GA. Furthermore, algorithm time performance was
satisfactory with a time ranging from 1 s for a small number
of generations and population sizes to 5 s for larger ones.
Also, we show how GA outperforms EWRRT, a sampling-
based algorithm previously proposed by our group, obtaining
smaller energy and travel costs with a smaller computational
time.

Our future work includes changing the fitness function
to account for the localization of the aerobot. Assuming
that the localization uses cameras pointing to the planet, the
aerobot will have a lower localization error if it is closer
to the surface of Venus (55 km) and larger if it is far from
it (70 km), due to the thick layer of clouds present in the
flying region. In this way, differently from the current cost
function, which favors paths in high altitudes, the new one
will represent a trade-off between flying above the clouds
to charge but below them to localize. Another possible
future work is adding non-flying zones in the environment,
which would behave like cylindric obstacles in 3D. For our
application, this could represent, for example, non-flyable
regions due to current climate conditions.
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