
Optimal Policies for Autonomous Navigation in Strong

Currents Using Fast Marching Trees

Bernardo Martinez Rocamora Jr.1* and Guilherme A. S. Pereira1

1Department of Mechanical, Materials and Aerospace Engineering, Benjamin M. Statler
School of Engineering and Mineral Sciences, West Virginia University, 1306 Evansdale

Dr., Morgantown, 26506, WV, USA.

*Corresponding author(s). E-mail(s): bernardo.rocamora@gmail.com;
Contributing authors: guilherme.pereira@mail.wvu.edu;

Abstract

Several applications require that unmanned vehicles, such as UAVs and AUVs, navigate environmental
flows. While the flow can improve the vehicle’s efficiency when directed towards the goal, it may also
cause feasibility problems when it is against the desired motion and is too strong to be counteracted
by the vehicle. This paper proposes the flow-aware fast marching tree algorithm (FlowFMT*) to solve
the optimal motion planning problem in generic three-dimensional flows. Our method creates either
an optimal path from start to goal or, with a few modifications, a vector field-based policy that guides
the vehicle from anywhere in its workspace to the goal. The basic idea of the proposed method is
to replace the original neighborhood set used by FMT* with two sets that consider the reachability
from/to each sampled position in the space. The new neighborhood sets are computed considering
the flow and the maximum speed of the vehicle. Numerical results that compare our methods with
the state-of-the-art optimal control solver illustrate the simplicity and correctness of the method.

Keywords: Path planning, motion policy, strong currents, strong winds, fast marching tree, holonomic robot.

1 Introduction

In diverse applications, autonomous aerial and
aquatic vehicles are required to work in environ-
ments with strong natural flows. In these appli-
cations, the flow can both assist or constrain the
vehicle’s motion. For instance, NASA’s IceNode
buoyant robots exploit ocean currents to move
along the basal ice-ocean interface of the Antarctic
ice shelves, acquiring long-duration melt rate mea-
surements (Rossi et al., 2021). In another example,
balloons developed by Loon provide internet to
remote places (Nagpal & Samdani, 2017). Rather
than flying against the winds, these balloons take

advantage of the atmospheric winds to navigate
without propulsion.

In an extraterrestrial application, NASA has
considered the use of aerial robots to explore the
cloud layer of the Venusian atmosphere (VEXAG,
2019), where recent observations have found evi-
dence of phosphine (Greaves et al., 2020), a com-
pound associated with microbial presence. The
strong winds of Venus, which may be as fast
as 100m s−1 (Rossi, Saboia, Krishnamoorthy, &
Vander Hook, 2023), can help the vehicle to cir-
culate the planet in five days but can also prevent
some latitudes from being reached sooner than
that (Martinez Rocamora Jr., Juan, & Pereira,

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y
[m

]

0 0.5 1 1.5 2

x [m]

FlowFMT*
Policy Vector Field
 Extraction

0 0.5 1 1.5 2

x [m]
0 0.5 1 1.5 2

x [m]

Fig. 1: Given an environment with a time-invariant flow (→) and prohibited regions (■□), the Policy-
FlowFMT* algorithm proposed in this paper creates a tree (represented in the center by vertices colored
by their costs) that encodes the optimal motion policy to a specified goal (•◦). Besides being directly used
to provide optimal trajectories to the goal (), the tree can also generate a vector field (→), which can
be applied online for robot control (· · ·).

2022). To help with these applications, the meth-
ods proposed in this paper and illustrated in
Figure 1 compute optimal trajectories or motion
policies for vehicles navigating natural flows.

The motion planning problem under the influ-
ence of environmental flows was approached from
many different perspectives. Alvarez, Caiti, and
Onken (2004) developed a method using a genetic
algorithm for minimum energy path planning of
autonomous underwater vehicles (AUVs) in two-
and three-dimensional (2D and 3D) environments
for time and space-varying ocean currents. While
the method considers complex ocean currents, it
does not constrain the vehicle’s maximum speed,
assuming that the vehicle can always counter-
act the ocean currents to reach a nominal speed.
Garau, Alvarez, and Oliver (2005) applied a grid-
based search (A*) method to find minimum energy
paths for AUVs in 2D ocean environments. The
velocity of the flow was considered to be always
smaller than the velocity of the vehicle relative to
the current. When the vehicle’s speed relative to
the fluid is smaller than the speed of the fluid rela-
tive to the inertial frame we say that the vehicle is
subjected to strong winds or currents. To handle
incorrectness and incompleteness issues caused by
the presence of strong currents, a sliding wavefront

expansion method was proposed by Soulignac
(2011). More recently, other path planning meth-
ods based on A* for such 2D environments were
introduced by Koay and Chitre (2013); Kularatne,
Bhattacharya, and Hsieh (2018). Minimum-time
and minimum-energy cost functions were devel-
oped by Kularatne et al. (2018) using flow-
oriented coordinates, which considered the fea-
sibility problem implicitly. Most of the existing
research for AUVs has considered 2D or quasi-
two-dimensional environments, but Kulkarni and
Lermusiaux (2020) proposed a level-set solution
based on exact differential equations for time-
varying and 3D scenarios. Tri-dimensional path
planning for AUVs was also considered by Zhai,
Hou, Zhang, and Zhou (2022), who developed an
efficient method that partitions the flow into a
set of regions with constant fields, thus transform-
ing the problem into a mixed integer optimization
problem (MIP), and uses a combination of branch-
and-bound breath-first-search and the Method of
evolving junctions (Li, Lu, Zhou, & Chow, 2017)
to compute the final optimal path.

The problem was also tackled in the realm
of Unmanned Aerial Vehicles (UAVs). Path plan-
ners for a gliding aircraft under complex wind
fields were studied by Chakrabarty and Langelaan

2

(2013); Langelaan (2008). The proposed plan-
ners grow a tree of feasible trajectories from a
discrete set of allowable inputs and weigh the
branches using a cost function that accounts for
changes in total energy and distance to the goal.
A real-time environment-aware planner has been
proposed by Oettershagen, Achermann, Müller,
Schneider, and Siegwart (2017) based on a varia-
tion of the Rapidly Exploring Random Trees star
(RRT*) (Karaman & Frazzoli, 2011) algorithm
that approximates the dynamics of the aircraft
using Dubins’ Airplane (Chitsaz & LaValle, 2007)
and incorporates non-uniform wind field data in
its heuristics. The method calculates the Dubins
Airplane paths considering zero wind and then
deforms the paths using the wind field. Later, it
uses an iterative method to generate a virtual goal
that will lead to the actual goal position after
the path is deformed by the wind. However, this
iterative method fails for strong currents.

In a previous work of our group, we used
a sampling-based approach, based on the RRT
algorithm, to create trajectories considering the
strong winds of the atmosphere of Venus (Mar-
tinez Rocamora Jr. et al., 2022). We first calculate
connections without considering the wind and
then integrate the wind along the calculated paths
to calculate a wind drift. Although efficient, our
method finds sub-optimal trajectories. An exten-
sion of the method to find optimal trajectories
would require rewiring the search tree, as the
RRT* does, which is difficult to perform under
the influence of strong winds. Very recently, a
few research groups focused their attention on
applying the Fast Marching Tree star (FMT*)
algorithm (Janson, Schmerling, Clark, & Pavone,
2015), which can find optimal paths faster and
without tree rewiring. FMT* is used by Lee,
Yoo, Hall, Anstee, and Fitch (2017) for energy-
optimal planning of underwater gliders navigat-
ing time-invariant flows. The connection between
nodes is performed by calculating the “trim
states” required to achieve straight-line motion.
Bonin, Guitart, Delahaye, Prats, and Feron (2023)
adapted the FMT* algorithm to time-optimal
motion planning of ultralight gliders navigating
in the time-invariant wind flows. The connections
between nodes are calculated using a simplified
optimal control problem that relies on a two-point
boundary solver. Both previous papers consider
3D scenarios and raise reachability problems due

to strong opposing flows. However, different from
the analytical procedure proposed in the present
paper, these methods numerically calculate the
reachability set by solving the vehicle’s equation
of motion.

This paper presents a different sampling-based
algorithm based on FMT* to solve the optimal
motion planning problem for holonomic vehicles
navigating strong 3D environmental flows. Unlike
previous FMT*-based methods, our algorithm
explicitly handles the feasibility problem created
by situations where the flow speed is larger than
the vehicle’s maximum speed relative to the flow.
To achieve that, we extended the use of reachabil-
ity cones defined by Soulignac (2011) to 3D and
used them to remove unreachable vertices in con-
structing the search tree. We also use reachability
cones to determine accurate minimum-time and
minimum-energy cost functions for the problem.
Additionally, based on a few modifications to the
proposed path planning algorithm, we present a
method that finds a motion policy for the vehi-
cle. The policy is represented as a vector field that
serves as a feedback planner that optimally guides
the vehicle from any valid configuration to its goal.
An illustration of the method is shown in Figure 1.
In summary, the main contributions of this paper
are (1) a motion planner based on FMT* that
accounts for the feasibility of the trajectory in the
presence of strong flows and prohibited regions
(e.g., obstacles), (2) a method to obtain minimum-
time and minimum-energy cost functions based on
the reachability condition, (3) a method that cre-
ates a vector-field policy for optimal navigation
in strong flows. We provide the source code of
our methods and, for comparison, the setup envi-
ronment for the equivalent optimal control solver
(OCS).

The rest of this paper is organized as follows.
The next section introduces the problem we are
solving in the paper. The proposed methods and
algorithms are explained in Section 3 and experi-
ments are provided in Section 4. Conclusions and
future work are presented in Section 5.

2 Problem Definition

2.1 Environment

In this paper, a single robot navigates within a
fluid (most commonly air or water) situated in a

3

tri-dimensional (3D) environment W ⊂ R3. The
fluid is assumed to be flowing, and its motion
is modeled as a time-independent vector field
Fc : W 7→ R3 that maps each position x⃗ =
[x, y, z]T ∈ W to a flow velocity vector c⃗(x⃗) =
[cx(x⃗), cy(x⃗), cz(x⃗)]

T ∈ R3. The vector field Fc

that represents the flow is continuous, i.e., given
any point x⃗0 ∈ W, there is a ball Br(x⃗0) = {x⃗ ∈
W | ∥x⃗−x⃗0∥ < r} of radius r ∈ R+ centered in x⃗0,
where ∥Fc(x⃗) − Fc(x⃗0)∥ < ϵ, for every arbitrary
ϵ ∈ R+. Intuitively, if we consider two points in
space that are sufficiently close to each other, the
velocities of the flow at these points are also simi-
lar. Finally, we assume that the environment may
contain prohibited regions, O, which may be seen
as obstacles for the vehicle but not for the fluid
(e.g., “no-fly zones” for an aircraft). Therefore, the
region where the vehicle can safely navigate, or
free space, is given by Wfree = W\O.

2.2 Robot

We assume a vehicle whose state space is given by
X = X × Ẋ, where X ⊆ W is the space of vehicle
positions, and Ẋ is its respective tangent space.
We consider that the vehicle is small (meter scale)
compared to the environment and the distances
traveled (kilometer scale). With this assumption
in mind, we use a point with no orientation to rep-
resent the vehicle. In practice, this point can be
seen as the vehicle itself or, for vehicles with more
complicated dynamic models, as a setpoint that
could be tracked with the aid of a non-linear con-
troller. Therefore, the vehicle’s configuration space
is equal to W, where the vehicle is represented
by its position x⃗ in the global reference frame. At
position x⃗, the velocity of the vehicle in the global
reference frame is given by

v⃗g(x⃗) = v⃗r(x⃗) + c⃗(x⃗) , (1)

where v⃗r(x⃗) is the velocity of the vehicle relative
to the flow and c⃗(x⃗) is the velocity of the flow. The
relative velocity is bounded by a maximum speed
vmax
r , such that ∥v⃗r(x⃗)∥ ≤ vmax

r for all x⃗ ∈ W.
We assume that the flow speed can be greater
than the vehicle’s speed relative to the flow (i.e.,
∥c⃗(x⃗)∥ ≥ vmax

r), which means that the vehicle may
not be able to counteract the flow all over the
environment.

2.3 Problem statement

The motion planning problem solved in this paper
is to find the best trajectory σ∗ in the set Σ
of all feasible trajectories σ(t) : [0, tf] → Wfree,
parameterized by t ∈ [0, tf], that move the vehi-
cle from an initial configuration x⃗S at t = 0 to a
set of admissible goal configurations x⃗G ∈ Xgoal

in a finite and arbitrary time t = tf . Notice that
tf is not necessarily the same for all trajectories
σ ∈ Σ. The cost function C(σ) to be minimized by
our problem maps a trajectory to a positive real
value C : Σ 7→ R+ and respects the constraints
imposed on the vehicle by the environment. Time
and energy cost functions will be minimized in
this paper. Once these functions are defined, our
problem is posed as:

min
σ

C(σ)

s.t. v⃗g(σ(t)) = v⃗r(σ(t)) + c⃗(σ(t)) ,

σ(0) = x⃗S ,

σ(tf) = x⃗G ,

σ(t) ∈ Wfree.

(2)

3 Methodology

This section presents our motion planning algo-
rithm. First, we introduce minimum-time and
minimum-energy cost functions necessary to spec-
ify our problem completely. Then, we define neigh-
borhood functions that are created using reacha-
bility cones. Finally, we describe the Flow-Aware
Fast Marching Tree (FlowFMT*) algorithm and
an adaptation to compute motion policies.

3.1 Flow-Aware Cost Functions

The problem presented in the previous section is
not completely specified without a cost function.
The literature uses two main categories of cost
functions, depending on the task (Kirk, 2004).
The first one specifies the minimum time problem,
which tries to guide the vehicle to its goal as fast as
possible, regardless of the energy spent. The other
type specifies the minimum energy problem, which
is useful when the vehicle has a finite amount of
energy available (e.g., battery) and is required to
spend this energy efficiently. Functions in these
two main categories are defined next.

4

3.1.1 Minimum-Time Cost Function

In early attempts to solve the minimum-time
problem, the cost functions used were incorrect in
the presence of strong flows (i.e., ∥c⃗(x⃗)∥ ≥ ∥v⃗r(x⃗)∥
for any workspace position x⃗). That meant that
trajectories found using such cost functions were
not necessarily feasible. The limited reachabil-
ity problem due to strong flows is illustrated in
Figure 2. For simplicity, in this figure and along
the rest of this paper the index x⃗ is omitted from
the vehicle’s and flow’s velocity components, i.e,
c⃗(x⃗) is written as c⃗, v⃗r(x⃗) as v⃗r, and v⃗g(x⃗) as v⃗g.

In this paper, we provide an extension to 3D of
the correct minimum-time cost function proposed
by Soulignac (2011) to solve 2D problems (we rec-
ommend the reader to read the discussion about
cost function incorrectness in (Soulignac, 2011)).
Minimum-time cost functions are usually defined
for continuous trajectories and n-waypoints dis-
cretizations, respectively, as:

Ct(σ) =

∫ tf

0

dt = tf and Ct(σ) ≈
n∑

k=0

∆t(k) .

(3)
Although these equations are correct, previous
work computed the travel time between two suf-
ficiently close configurations (∆t) with simple
heuristics that accounted for the traveled distance
and an additional term that considered the rela-
tive heading of the flow and the vehicle (Petres
et al., 2007) (thus assuming constant speed) or a
ratio between the traveled distance and the sum of
the vehicle speed and the speed of the flow oppos-
ing the movement (Blackmore et al., 2010; Garau
et al., 2005). None of these heuristics were able to
handle the strong flow condition.

When the flow speed gets larger than the max-
imum vehicle’s speed relative to the flow, the
drift caused by the flow cannot be compensated,
thus creating regions that cannot be reached by
the vehicle (Figure 2). To create discrete func-
tions that consider this characteristic, we follow
the same procedure adopted by Soulignac (2011)
but extend it to 3D. We assume that the vehi-
cle can change direction instantaneously and that
the minimum time path between two waypoints
under a constant flow vector is a straight line if the
connection is feasible. We also assume that two
consecutive waypoints are close enough so that
the flow is constant between them. Notice that

Increasing

Fig. 2: The reachable region for a vehicle mov-
ing on a constant flow is greatly affected by the
ratio between the flow velocities and the vehicle’s
velocity relative to the flow. The circles represent
iso-temporal lines given by the position reached
by the vehicle after moving towards any direc-
tion for a fixed amount of time at a constant
speed ∥v⃗r∥. When the flow velocity ∥c⃗∥ = 0, the
circles are concentric and expand outwards with
time, thus allowing the vehicle to reach the entire
space (green). With ∥v⃗r∥ > ∥c⃗∥ > 0, the cir-
cles are drifted accordingly, indicating that the
vehicle travels less when moving against the flow
but still reaches the entire space (green). When
∥c⃗∥ ≥ ∥v⃗r∥ > 0, the vehicle cannot counteract
the flow, which creates a region that cannot be
reached (red) even if the vehicle’s velocity relative
to the flow is directly opposed to the flow.

these assumptions are quite realistic in large envi-
ronments sampled with a very high number of
waypoints. Thus, considering two positions x⃗(tA)
and x⃗(tB), we can define a directional edge as

d⃗ = x⃗(tB)− x⃗(tA) = [dx, dy, dz]
T. The time inter-

val between these two positions is ∆t = tB − tA.
By integrating the model in (1) and considering
the vehicle’s relative velocity v⃗r and flow velocity
c⃗ to be constant along this edge we have:

d⃗ = v⃗g∆t = (v⃗r + c⃗)∆t ⇔

(vr,x + cx)∆t = dx

(vr,y + cy)∆t = dy

(vr,z + cz)∆t = dz.

(4)
By incorporating this equation on the inner

product of the relative velocity (v⃗r · v⃗r = v2r,x +
v2r,y+v2r,z), we obtain an equation for the 3D cone
shown in Figure 3 as:

(c⃗ · c⃗− v⃗r · v⃗r)∆t2 − 2(d⃗ · c⃗)∆t+ d⃗ · d⃗ = 0 . (5)

5

An in-depth discussion about the possible out-
comes of this equation is derived by Soulignac
(2011). In the next few paragraphs, we try to sum-
marize these outcomes and connect them to our
method.

In the case that c⃗· c⃗ = v⃗r ·v⃗r, (5) degenerates to
a first-order equation, and the solution is simply
∆t = (d⃗ · d⃗)/(2(d⃗ · c⃗)). When c⃗ · c⃗ ̸= v⃗r · v⃗r, the
time cost for the straight line path between the
two vertices is obtained by solving the quadratic
equation for ∆t as:

∆t =
d⃗ · c⃗±

√
(d⃗ · c⃗)2 − (c⃗ · c⃗− v⃗r · v⃗r)(d⃗ · d⃗)

(c⃗ · c⃗− v⃗r · v⃗r)
.

(6)
In the case where c⃗ · c⃗ < v⃗r · v⃗r, the determi-

nant ((d⃗ · c⃗)2− (c⃗ · c⃗− v⃗r · v⃗r)(d⃗ · d⃗)) is positive, but
the product of the two roots is negative, indicating
that only one solution is valid (the negative sign
solution, which results in positive ∆t). Thus, in
this case (c⃗·c⃗ < v⃗r ·v⃗r), the sign of the determinant
defines whether or not the connection is feasible.
When the computation of ∆t in (6) returns com-
plex numbers, the solution does not provide any
physical meaning except indicating that the con-
nection is unfeasible. In fact, for some given v⃗r, c⃗,
and d⃗, the cone angle β, as shown in Figure 3, is
derived from the geometry of the problem as:

cosβ =

√
c⃗ · c⃗− v⃗r · v⃗r

∥c⃗∥
. (7)

To check if a straight line connection between
two points is feasible, we can check if cos (β) ≤
cos (βmax), where cos (βmax) is found when ∥v⃗r∥ =
vmax
r . Thus, the complex solutions can be ruled
out a priori (without computing the determinant
in (6)) by assessing this inequality.

Interestingly, when the flow velocity is stronger
than the relative velocity (c⃗ · c⃗ > v⃗r · v⃗r), the two
possible values for ∆t are positive and valid. In
this case, the lower-time solution should be chosen
for the minimum-time problem. Therefore, con-
sidering that the path is feasible and the vehicle
moves with its maximum speed (i.e., v⃗r · v⃗r =
(vmax

r)2), we obtain the minimum-time solution
between the two points for both the 2D and 3D
cases by taking the negative sign solution of (6).
Finally, to compute the total cost of a trajectory,
the time cost ∆t calculated using (6) is used in (3)

for each segment that composes the n piece-wise
linear path traversed by the vehicle from start to
goal. Notice that the resulting minimum-time cost
function is equivalent to the one derived by Zhai
et al. (2022), both higher-dimension extensions of
the cost function proposed by Soulignac (2011).

3.1.2 Minimum-Energy Cost Functions

Common energy-based cost functions for contin-
uous and discrete trajectories are, respectively,
given by:

Ce(σ) =

∫ tf

0

P (t)dt and

Ce(σ) ≈
n∑

k=0

P (k)∆t(k) , (8)

where P is the power required to overcome the
drag. This required power can be modeled as
a polynomial of the vehicle’s speed relative to
the flow to represent diverse forms of drag (e.g.,
viscous, pressure, or lift-induced drag):

P (t) =

n∑
i=0

αi∥v⃗r(t)∥i . (9)

From (9) and (8), if the power model has
n > 1, we observe that the influence of the vehi-
cle speed is predominant in the energy cost. Thus,
to minimize the cost function, it is necessary to
minimize the vehicle’s speed along the planned
trajectory. However, this is not trivial as small
vehicles’ speeds relative to the flow may yield fea-
sibility problems, since they reduce the reachable
region as shown in Figure 2. Further, this type of
energy-based cost function can create situations
where the resultant energy cost could be as small
as wanted as long as it is acceptable to have very
long terminal times.

Some methods like Zhai et al. (2022) or
Kularatne et al. (2018) address this issue by com-
bining time- and energy-based cost functions. This
is achieved by adding a component that is pro-
portional to time (known as hotel cost), which
penalizes larger final times, to the energy-cost
function shown above. In this work, we propose
an alternative to find the energy cost for each seg-
ment of the discrete trajectories without explicitly

6

Reachable region when

(a)

Reachable region when

Reachable region
for an arbitrary

(b)

Reachable region when

Minimum reachable
region containing

 ()

(c)

Fig. 3: Computation of the reachable region. Given a time interval ∆t, the displacement due to the flow
velocity is given by c⃗∆t, while the displacement due to the vehicle’s velocity relative to the flow is the
surface of a sphere of radius v⃗r∆t. Reachability cones are found by considering different values for these
two parameters v⃗r and ∆t as shown in Figure 2. In (a), the largest reachable cone is defined by βmax,
which is obtained from when ∥v⃗r∥ = vmax

r using (7). This case also corresponds to the minimum time
∆tmin connecting the start position (•◦) to the goal position (•◦). In (b), considering ∥v⃗r∥ < vmax

r , the

cone angle β is smaller than βmax. In (c), a cone defined by βmin is the limit case containing the vector d⃗
which connects the start position (•◦) to the goal (•◦) position. The geometry of this minimum reachable
cone is used to calculate a vmin

r , which is used in our minimum-energy cost function. Notice that a lower

speed increases the time that it takes to move by d⃗, i.e., ∆t < ∆t′.

including such a term. For a given pair of sam-
pled positions (start and goal), our solution finds
the minimum speed vmin

r that guarantees that the
vehicle can still reach the goal position from the
start position. To find the minimum speed, we
use the limit situation in which the surface of the
reachability cone contains the vector d⃗ that con-
nects start and goal samples. From the geometry
of the problem, illustrated by Figure 3, we obtain:√

c⃗ · c⃗− (vmin
r)2

∥c⃗∥
=

d⃗ · c⃗
∥d⃗∥∥c⃗∥

⇔

vmin
r =

√√√√c⃗ · c⃗−

(
d⃗ · c⃗
∥d⃗∥

)2

, (10)

which can be used with (9) and (6) to calculate
P (t)(k) and ∆t(k), which are then used in (8) to
calculate the energy cost for each edge of the path.

3.2 Flow-Aware Neighborhood Sets

Sampling-based motion planners, such as the one
proposed in this paper, usually rely on the con-
cept of neighborhood, which is usually used to
specify a set of vertices (samples) that are candi-
dates to be connected to the current vertices of a

graph during its construction. One of the novelties
of our method is the division of the neighborhood
set into posterior and anterior sets. The posterior
neighborhood set of a given vertex v, as shown in
Figure 4(a), is the set of vertices that respect two
conditions: 1) the vertices can be reached from v
(i.e., they are contained in the reachability cone
defined by v) and 2) the vertices are within a
distance dmax from v. On the other hand, the
anterior neighborhood set of a vertex v, as shown
in Figure 4(b), is the set of vertices that respect
two conditions: 1) the reachability cone defined by
these vertices contains v and 2) the vertex v is
within a distance dmax from these vertices. The
definition of these two sets allows us to handle
the reachability constraint caused by the presence
of strong currents when creating a sample-based
algorithm, as explained next.

3.3 Flow-Aware Fast Marching Tree

Using the previously defined cost functions and
neighborhood sets, this section presents spe-
cialized Fast Marching Tree star algorithms
(FMT*) (Janson et al., 2015) that consider the
reachability constraints imposed by the strong
currents. We first show the standard version of
the algorithm, for which the tree grows from the

7

Posterior
Neighborhood:

(a)

Anterior
Neighborhood

(b)

Fig. 4: Two types of neighborhood sets are
defined for our method, substituting the standard
Near() function used by the original FMT* algo-
rithm. Given a vertex v, we define (a) the posterior
neighborhood, with vertices that can be reached
from v, and (b) the anterior neighborhood, with
vertices that can reach the vertex v.

start position until it reaches the goal region. In
the second part of the section, we slightly change
the algorithm so it expands the tree from the goal
position to every feasible point sampled in the
environment and creates a policy.

3.3.1 Flow-Aware FMT*

The Flow-Aware FMT* algorithm (FlowFMT*)
proposed in this paper is shown in Algorithm 1.
Changes with respect to the original FMT* algo-
rithm (Janson et al., 2015) are displayed in red.
The algorithm creates a tree graph with an empty
edge set and the vertex set defined by m random

samples of the space, the start, and the goal posi-
tions (line 2). Three sets of vertices (lines 3–4) are
created: the set of unvisited vertices, which is ini-
tialized with all vertices but the start position; the
open set, which initially has the start position; and
the closed set, which is empty at the beginning.
Then, two structures (NA and NP) that save two
sets of neighbors (see Section 3.2) for each vertex
are initialized (lines 6–9).

Algorithm 1 Flow-Aware FMT* Algorithm

1: function σ = FlowFMT*(xS , xG, Vpool)
2: V ← xS ∪ Vpool ∪ xG, E ← ∅
3: Vunvisited ← V \{xS}, Vopen ← xS
4: Vclosed ← ∅
5: z← xS
6: NP

z ← Post .Nbhd(∅, V \{z}, z, rn)
7: NP ← Save(∅, NP

z , z)

8: NA
z ← Ant .Nbhd(∅, V \{z}, z, rn)

9: NA ← Save(∅, NA
z , z)

10: while z ̸= xG do
11: Vopen,new ← ∅
12: Xnear = NP

z ∩ Vunvisited
13: for x ∈ Xnear do
14: NA

x ← Ant .Nbhd(NA, V \{x}, x, rn)
15: NA ← Save(NA, NA

x , x)

16: Ynear ← NA
x ∩ Vopen

17: ymin ← argminy∈Yn.
{c(y)+Cost(y, x)}

18: if CollisionFree(ymin, x) then
19: E ← E ∪ {(ymin, x)}
20: Vopen,new ← Vopen,new ∪ {x}
21: Vunvisited ← Vunvisited ∩ {x}
22: c(x) = c(ymin) + Cost(ymin, x)
23: end if
24: end for
25: Vopen ← (Vopen ∪ Vopen,new)\{z}
26: Vclosed ← Vclosed ∪ {z}
27: if Vopen = ∅ then
28: return ∅
29: end if
30: z← argminy∈Vopen

{c(y)}
31: NP

z ← Post .Nbhd(NP , V \{z}, z, rn)
32: NP ← Save(NP , NP

z , z)
33: end while
34: return GetPath(xG, T (Vopen ∪ Vclosed, E))
35: end function

The algorithm executes until no vertices are
found on the open set or a path to the goal is found
(lines 10 and 29). At each iteration, the minimum
cost vertex of the open set is computed (line 30),
and the posterior neighborhood of this vertex is
calculated or retrieved (lines 31–32). This set is
intersected with the set of unvisited vertices (line

8

Algorithm 2 Anterior/Posterior Neighborhood
Set Computation Functions

1: function Nq = Ant./Post.Nbhd(N,V, q, rn)
2: if ∃N(q) then
3: return N(q)
4: end if
5: Nq ← ∅
6: q⃗ ← GetPosition(q)
7: c⃗← Fc(q⃗)

8: cos (βmax)←
√

c⃗ · c⃗− (vmax
r)2/∥c⃗∥

9: for v ∈ V do
10: x⃗← GetPosition(v)

11: d⃗← q⃗ − x⃗ (Ant.) or d⃗← x⃗− q⃗ (Post.)

12: cosβ ← (d⃗ · c⃗)/(∥d⃗∥∥c⃗∥)
13: if ∥d⃗∥ < rn then
14: if ∥c⃗∥ ≥ vmax

r then
15: if cosβ ≥ cos (βmax) then
16: Nq ← Nq ∪ v
17: end if
18: else
19: Nq ← Nq ∪ v
20: end if
21: end if
22: end for
23: return Nq
24: end function

12), and for each of the vertices x in the inter-
section, a search for a locally optimal one-step
connection is performed by testing connections
from all the vertices y in the intersection of the
anterior neighborhood and the open set to x (lines
13–17). Up to this point, no collision checks are
done. Once the locally-optimal one-step connec-
tion is found, it is tested for collision (line 18). If
no collisions are detected, the edge is added to the
tree (line 19). The newly added vertex is added to
the open set and removed from the unvisited set
(lines 20–21). After looping through all vertices
in the posterior neighborhood, the query vertex
is removed from the open set and added to the
closed set (lines 25–26). The neighborhood sets
are calculated using the AnteriorNeighborhood
(shortened to Ant.Nbhd) and PosteriorNeighbor-
hood (shortened to Post.Nbhd) functions as shown
in Algorithm 2. The difference between the two
functions is given by the definition of d⃗ (line 11).

3.3.2 Computing a Policy using
Flow-Aware FMT*

More useful than simply obtaining a path from the
start to the goal, a policy defines paths from all
positions in the space to the goal. A policy can be
represented by a vector field, which can be used

as a feedback system to compensate for distur-
bances (LaValle, 2006). Since the FMT* method
is a graph-based level-set method that computes
increasing levels of the cost function as the tree
marches to cover the environment, it can be easily
used to compute a policy. We then propose a few
modifications to the Flow-Aware FMT* algorithm
(Algorithm 1) to make this possible: (i) the root
of the tree (lines 2–5) is set to the goal position;
(ii) the anterior (lines 14–15) and posterior (lines
31–32) neighborhood sets are swapped; (iii) the
order of the vertices on the cost function and col-
lision checking functions (lines 18–19, and 22) are
inverted; (iv) the stopping criteria (lines 10 and
27) is changed to only interrupt the procedure if
the open set becomes empty.

The outcome of these modifications is shown
in Algorithm 3. Changes with respect to the stan-
dard Flow-Aware FMT* algorithm (Algorithm 1)
are displayed in red. Notice that Algorithm 3
builds a tree from the goal position but still con-
siders that the direction of motion of the vehicle is
towards the goal. The dynamic programming pro-
cedure (line 17) considers only valid connections
given the sets defined in Section 3.2.

A policy is encoded in the resulting tree. Once
this tree is found, the vehicle’s velocity in the
global reference frame v⃗g can be calculated using
a multivariate interpolation around each position
x⃗ in the continuous space. We propose using an
inverse distance weighting interpolation of the ver-
tices of the tree that are close to x⃗ to extract the
policy vector field as:

v⃗r(x⃗) = v⃗g(x⃗)− c⃗(x⃗) =

∑k
i=0 wi(x⃗) v⃗g,i∑k

i=0 wi(x⃗)
− c⃗(x⃗) ,

(11)
where v⃗g,i (0 ≤ i ≤ k) are the vehicle’s veloci-
ties in the global reference frame at the k vertices
vi of the tree that are within a distance r from
x⃗ (i.e., vi ∈ V ∩ Br(x⃗)). The process is illus-
trated by Figure 5. The weight function is given
by wi(x⃗) = 1/(x⃗ − x⃗i)

p where p is a parameter
(commonly, p = 2). Notice that we assume that
x⃗ is located in a region from which the goal can
be reached.We do not include any further devel-
opment in this paper, but simple heuristics, like
counting the number of vertices of the tree in the
ball Br(x⃗) can help identify whether x⃗ belongs to
a feasible region or not. From (1) the vehicle’s

9

Algorithm 3 Flow-Aware FMT* Algorithm (Pol-
icy Version)

1: function T = Policy-FlowFMT*(xG, Vpool)
2: V ← xG ∪ Vpool, E ← ∅
3: Vunvisited ← V \{xG}, Vopen ← xG
4: Vclosed ← ∅
5: z← xG
6: NP

z ← Post .Nbhd .(∅, V \{z}, z, rn)
7: NP ← Save(NP , NP

z , z)

8: NA
z ← Ant .Nbhd .(∅, V \{z}, z, rn)

9: NA ← Save(NA, NA
z , z)

10: while Vopen ̸= ∅ do
11: Vopen,new ← ∅
12: Xnear = Nz ∩ Vunvisited
13: for x ∈ Xnear do
14: NP

x ← Post .Nbhd(NP , V \{x}, x, rn)
15: NP ← Save(NP , NP

x , x)

16: Ynear ← NP
x ∩ Vopen

17: ymin ← argminy∈Yn.
{c(y)+Cost(x, y)}

18: if CollisionFree(ymin, x) then
19: E ← E ∪ {(ymin, x)}
20: Vopen,new ← Vopen,new ∪ {x}
21: Vunvisited ← Vunvisited ∩ {x}
22: c(x) = c(ymin) + Cost(x, ymin)
23: end if
24: end for
25: Vopen ← (Vopen ∪ Vopen,new)\{z}
26: Vclosed ← Vclosed ∪ {z}
27: z← argminy∈Vopen

{c(y)}
28: NA

z ← Ant .Nbhd(NA, V \{z}, z, rn)
29: NA ← Save(NA, NA

z , z)
30: end while
31: return T (Vopen ∪ Vclosed, E)
32: end function

velocity relative to the flow can be computed by
subtracting the interpolated value from the flow
velocity at this point.

3.3.3 Analysis

In this section, we discuss the computational
complexity, the optimality, and the complete-
ness of the FlowFMT*. Notice that FlowFMT*
is very similar to the original version of FMT*,
as can observed by the highlighted lines in algo-
rithms 1 and 3. The main difference is that,
instead of a single spherical neighborhood set of
radius rn for each sample, FlowFMT* creates two
spherical-conic neighborhood sets (intersection of
a wind-driven elliptical cone and a sphere of radius
rn) for each sample. With this modification, we
reduce the number of calls of functions Cost()
and CollisionFree(), which highly improves the
computation time of the algorithm, but does not

Fig. 5: Policy encoded by the tree T (V,E) result-
ing from Algorithm 3. The global velocity v⃗g,i at
the vertices i of the tree around the position of
the robot x⃗ are combined to find the target global
velocity v⃗g. By subtracting the local flow velocity
c⃗, the robot’s velocity v⃗r, which is used to control
the robot, can be retrieved as shown in (11).

change its computational complexity when com-
pared to the original FMT*. Therefore, for n sam-
ples, the computational complexity of FlowFMT*
is still O(n log(n)) in expectation, as discussed
by Janson et al. (2015). To achieve this compu-
tational complexity, Algorithm 2 which finds the
neighborhood sets for each query node should be
implemented using KDTrees, so that the filtering
by rn happens in O(log(n)).

The total number of samples in the two neigh-
borhood sets of FlowFMT* can be larger or
smaller than the number of samples of the spheri-
cal set of FMT*, depending on the relative speed
of the wind. This, however, does not change
the space complexity of the method, which also
remains O(n log(n)). The multiplicative constant
can make FlowFMT* to use more memory for low-
velocity flows and less memory for high-velocity
flows.

For the original spherical neighborhood set
with radius

rn =

(
λ log(n)

n

)1/d

, (12)

where λ is a positive constant and d is the space
dimensionality, FMT* is proven to be asymp-
totically optimal (and therefore probabilistically
complete) (Janson et al., 2015). The adoption of
spherical-conic neighborhood sets by FlowFMT*

10

does not change this characteristic because, in
essence, the use of these sets is equivalent to the
use of the original spherical set and a cost function
Cost(x, y) that would return infinite when sample
y is unreachable from sample x. Thus, the idea
behind FlowFMT*, which does not change the
asymptotic optimality proof of FMT*, is to avoid
several computations of the cost function (and also
of CollisionFree()) by pre-selecting the neighbor-
ing samples that would not return an infinite cost
(reachable neighbors). Hence, FlowFMT* inherits
the characteristics of FMT* and remains asymp-
totically optimal.

The idea of reachable sets changes the overall
behavior of FMT* in a few situations. Depending
on the flow configurations, placement of prohib-
ited regions (obstacles), and also on the maximum
speed of the vehicle, there may exist a set of sam-
ples in the environment from where the vehicle
cannot reach the goal. If the initial configuration
belongs to this set, the motion planning problem
is infeasible. In most cases, this happens when the
vehicle is not able to counteract the flow speeds
as it tries to avoid the prohibited regions and
environment limits. Situations like this will be
exemplified in the experiments of the next section.
Although the presence of a set of samples that
leads to infeasible problems does not change the
optimality and completeness of either FMT* or
FlowFMT*, it makes FlowFMT* more interest-
ing. FMT* would find an element x of this set
when the cost to all neighbors in the spherical set
is infinite. FMT* would then connect x to one of
its neighbors and at the end would return a path
of infinity cost. On the other hand, FlowFMT*
would explicitly define empty neighborhood sets
for each sample that cannot reach the goal. This
is a major advantage of FlowFMT*, which would
immediately (without computing any cost or per-
forming collision checks) return an empty path,
instead of a path that can’t be physically fol-
lowed by the vehicle, as returned by FMT*. Since
FlowFMT* returns a path when the initial posi-
tion can reach the goal and returns an empty
path when this is not possible, FlowFMT* is prob-
abilistically complete (a condition necessary for
asymptotic optimality), even when it faces an
infeasible motion planning problem. Notice that,
with small modifications, FMT* could have the
same behavior but at the cost of trying to con-
nect samples in the infeasible region with all of

their neighbors before detecting that the problem
is actually infeasible.

The Policy-FlowFMT* algorithm has the same
complexity as FlowFMT* since the differences
between the algorithms are only related to the
in-line ordering of some of its computations. We
can then analyze the post-processing step given
by (11). After the search tree is computed offline,
this equation is supposed to be used at runtime.
It is assumed that the tree resulting from Algo-
rithm 3 would be stored in memory and the robot
would only need to query for the vertices that
are close to it. A simple search using KDTrees,
which is O(log(n)), can be used to assess the
distance between the current robot position and
the vertices of the tree and calculate the pol-
icy at O(1). Therefore, the runtime complexity of
Policy-FlowFMT* is O(log(n)).

4 Experimental Results

In this section, the performance of the proposed
planner is evaluated in 2D and 3D scenarios, with
and without prohibited regions. The resulting
paths are always compared to the paths obtained
by a state-of-the-art optimal control solver (OCS),
the Imperial College London Optimal Control
Software (ICLOCS2) (Nie, Faqir, & Kerrigan,
2018). Additionally, by testing our method in
environments previously published in the liter-
ature, we could also compare FlowFMT* with
a Level Set Method (implemented by Zhai et
al. (2022)), the Evolving Junction method (Zhai
et al., 2022), true optimal solutions (Subramani,
Wei, & Lermusiaux, 2018), and a competitive
grid-based approach (Kularatne et al., 2018). All
the simulations were performed using an Intel®

Core™ i9-9900K CPU at 3.6GHz, with 16 cores
and 32GB of RAM.

4.1 Canonical Jet Flow
Environment

The crossing of canonical jet flows are a set
of illustrative problems described in prior works
like Subramani et al. (2018) and Zhai et al. (2022),
that bring possibilities to validate FlowFMT* on
different aspects. One specific problem of this val-
idation scenario is that it has discontinuities in
the flow speeds, which contradicts our assump-
tion that, in the limit, as the sample density gets

11

rn

rn
*

Fig. 6: Adaptive Neighborhood Radius for the
FlowFMT*. The neighborhood size is decreased
when the streamlines curve to improve on the
assumption that the flow velocity is constant
inside of the neighborhood.

higher, the flow speed between two neighboring
samples tends to be constant. Although increasing
the number of samples minimizes the effect of the
discontinuity on the entire path, in our simulations
we also included an adaptive neighborhood radius
according to a vector-similarity metric based on
the difference between the flow velocities in the
start and goal vertices (c⃗parent and c⃗child). The
adaptive neighborhood radius is given by

r∗n = rn

(
1− ∥c⃗parent − c⃗child∥

2cmax

)
, (13)

where rn is the original radius proposed for the
FlowFMT* as shown in Equation (12). Figure 6
illustrates how this process works. Notice that r∗n
tends to rn as our assumption of constant flow
within the neighborhood region is better satisfied.
If discontinuities or large gradients are present,
the smaller radius will reduce the chances of
connecting samples far from each other.

4.1.1 Two-Dimensional Jet

In this subsection we consider a vehicle that can
move at a maximum speed vmax

r = 10.0m s−1 rel-
ative to the flow. We limit the environment to a
box of side 100m, i.e., W = [0, 100]× [0, 100] (the
dimensional unit ‘meters’ is omitted in the rest
of this section for simplicity). To match the sce-
nario proposed Subramani et al. (2018), we plan
paths from the start position x⃗start = [20.0, 20.0]T

to the goal position x⃗goal = [80.0, 80.0]T. The flow

environment is modeled as

c⃗(x, y) =

{
[20.0, 0.0]T if y ≥ 40 and y ≤ 60 ,

[0.0, 0.0]T otherwise .

(14)

FlowFMT* is compared to the optimal results
found using the methodology explained in Subra-
mani et al. (2018), where a simple gradient-based
numerical method is used to find the optimal
solution to the jet crossing problem. The opti-
mization is solved using Matlab (fmincon func-
tion). In Figure 7, we show the optimal solution
obtained numerically and solutions found using
FlowFMT* for different number of samples. The
cost using 25,600, 102,400, and 409,600 samples,
were, respectively, Ct(σ) = 6.2671 s, Ct(σ) =
6.2608 s, and Ct(σ) = 6.2569 s. The cost of the
numerical solution was Ct(σ) = 6.2523 s. Notice
that the discontinuity in the flow field causes
errors in FlowFMT*’s solution (a small shift com-
pared to the optimal solution), but as the number
of samples increases, and with the inclusion of
the adaptive neighborhood radius this impact is
significantly decreased.

Figure 8 shows a solution computed using
Policy-FlowFMT* with 102,400 samples. The tree
starting at the goal position is shown in Fig 8(a)
and the resultant vector field is shown in Fig 8(b).
Similar to the previous result, the computed tra-
jectory is very close to the optimal one. Also,
notice that, differently from other methods, our
vector field explicitly indicates a region of the
space from where the vehicle cannot reach the goal
(no solution).

4.1.2 Three-Dimensional Jet

In this subsection, we consider a vehicle that can
move at a maximum speed vmax

r = 3.0m s−1 rel-
ative to the flow. We set the environment limits
to the box W = [−10, 10]× [−10, 10]× [0, 20] (the
dimensional unit ‘meters’ is omitted in the rest
of this section for simplicity). To match what is
found in the literature, in this section, we plan
paths from the start position x⃗start = [0.0, 0.0]T

to the goal position x⃗goal = [0.0, 20.0]T. The flow

12

0 20 40 60 80 100

x [m]

0

10

20

30

40

50

60

70

80

90

100
y

[m
]

0

1

2

3

4

5

6

(a)

0 20 40 60 80 100

x [m]

0

10

20

30

40

50

60

70

80

90

100

y
[m

]

0

1

2

3

4

5

6

(b)

0 20 40 60 80 100

x [m]

0

10

20

30

40

50

60

70

80

90

100

y
[m

]

0

1

2

3

4

5

6

(c)

Fig. 7: Motion planning for a vehicle crossing a 2D jet flow using FlowFMT*. The robot moves from
the start position (•◦) to the goal (•◦). We show the regions where the speed of the flow is greater (■) and
smaller (■) than the maximum speed of the vehicle relative to the flow. The edges of the tree are colored
based on the cost of the children’s vertices. The numerical optimal solution is shown in black (). The
solution found with the adapted FlowFMT* is shown in red () for (a) 25,600, (b) 102,400, and (c)
409,600 samples.

0 20 40 60 80 100

x [m]

0

20

40

60

80

100

y
[m

]

0

1

2

3

4

5

6

7

8

9

10

(a)

0 20 40 60 80 100

x [m]

0

20

40

60

80

100
y

[m
] No

Solution

(b)

Fig. 8: Motion planning for a vehicle crossing a 2D jet flow using Policy-FlowFMT*. (a) Policy-
FlowFMT* tree with the root at the goal position (•◦) for a two-dimensional jet flow. (b) Vector field
computed with Policy-FlowFMT*. The figures show the following trajectories from start (•◦) to the goal
(•◦): the optimal trajectory computed numerically (), the trajectory from the tree computed by Poli-
cyFlow* (), and the trajectory computed by integrating the vector field (· · ·). From the regions where
the field is not computed, the robot cannot reach the goal (no solution).

environment is modeled as

c⃗(x, y, z) =

[0.5, 0.0, 0.0]T if z ≥ 0 and z ≤ 10 ,

[2.0, 1.0, 0.0]T if z ≥ 10 and z ≤ 15 ,

[0.0, 0.0, 0.0]T otherwise .

(15)

FlowFMT* is compared to the optimal control
solver ICLOCS2 (OCS), the Evolving Junction
method (EJ) (Zhai et al., 2022), and the Level

13

Set method (LS) when computing minimal-time
paths. It is important to mention that LS is
known to compute the shortest-time path over
time-varying flows at the cost of longer computa-
tional times. On the other hand, EJ was proposed
as an efficient solution that avoids errors induced
by the discretization of the environment. Because
it works on partitions of the flow, it explicitly
handles discontinuous flows, as is the case of the
environment used in this section.

Table 1 shows the comparison of the methods.
The numerical results for EJ and LS came directly
from Zhai et al. (2022). Besides the minimum-
time cost, Ct, found by each method, Table 1 also
shows the parameters of each path found, where
angles θi and γi are elevation and azimuth angles
of the path segments crossing the horizontal planes
in z = 10 and z = 15 as defined by Zhai et
al. (2022). Notice that all paths are very similar,
showing that FlowFMT* converges to the optimal
path, even in an environment with discontinuous
flow. Figure 9 compares the trajectory found by
FlowFMT* using 204,800 samples with trajecto-
ries found by OCS. The trajectories found with
EJ and LS were omitted from the plot due to
their similarity to the other two trajectories. Since
we did not implement the Evolving Junction (EJ)
method, a time comparison between the methods
cannot be made. Despite this, although EJ could
be the best choice for environments with discon-
tinuous and easy-to-segment flows, we believe that
FlowFMT* would be a better choice for general
flow environments, where the field cannot be eas-
ily partitioned into piece-wise constant subfields.
The double-gyre flow environment, exploited in
the next subsection, is an example of such an
environment.

4.2 Double-Gyre Flow Environment

In this subsection, we consider a vehicle that can
move at a maximum speed vmax

r = 0.05m s−1

relative to the flow. The environment is modeled
using a three-dimensional (3D) version of double-
gyre flow, which is usually used to evaluate motion
planning on flows (see (Kularatne et al., 2018; Lee

Table 1: Comparison of Evolving Junction (EJ),
Level Set (LS), ICLOCS2 (OCS), and FlowFMT*
methods for the 3D jet flow environment. The seg-
ment angles for the FlowFMT* were estimated by
calculating elevation and azimuth angles to the
interpolated path crossing the horizontal planes in
z = 10 and z = 15.

EJ LS OCS FlowFMT*

θ1 82.7924 83.5659 83.0881 83.7492
θ2 62.0255 63.3118 63.4041 64.8360
θ3 73.7397 73.80277 74.7784 75.3569
γ1 −136.0775 −135.6592 −134.8846 −133.9709
γ2 30.2293 30.2407 30.9735 32.8730
γ3 −161.6199 −161.2246 −161.6005 −158.1282
Ct 6.9096 6.9826 6.9092 6.9090

et al., 2017)), as:

c⃗(x, y, z) =

−πA sin(πx/s) cos(πy/s) cos(πz/s)

πA cos(πx/s) sin(πy/s) cos(πz/s)

πA sin(πz/s) ,

(16)
where A is the amplitude scaling factor that con-
trols the maximum flow speed (maxx⃗∈W ∥c⃗(x⃗)∥),
and s determines the characteristic length of the
gyres. As suggested by Kularatne et al. (2018),
we choose A = 0.02 so that the maximum flow
speed is 0.0625m s−1, which is greater than the
vehicle’s maximum speed relative to the flow. We
limit the environment to a box of side 2m, i.e.,
W = [0, 2] × [0, 2] × [0, 2] (the dimensional unit
‘meters’ is omitted in the rest of this paper for
simplicity), and choose s = 1. To obtain the stan-
dard two-dimensional (2D) double-gyre flow, the
slice where z = 0 is used.

4.2.1 Two-Dimensional Gyre

In a 2D environment (z = 0 in (16)), FlowFMT*
is used to find paths from the start posi-
tion x⃗start = [0.1, 0.1]T to a few different
goal positions Xgoal = {[0.1, 1.9]T, [1.5, 1.0]T,
[1.9, 0.9]T, [1.9, 1.1]T, [1.9, 1.9]T}, as shown in
Figure 10. This figure shows the optimal-time
paths for both minimum-time and minimum-
energy cost functions and the resultant trees used
to obtain these paths. The edges of the tree were
colored by the cost of the children’s vertices.
The solution from the equivalent optimal control
problem is shown for comparison. The general

14

0

2

4

6

8

10

10

12

14

16

z
[m

]

18

20

y [m]

0
10

5

x [m]

0
-5-10 -10

(a)

-3 -2 -1 0 1 2 3

x [m]

-3

-2

-1

0

1

2

3

y
[m

]

(b)

Fig. 9: Motion planning for a vehicle crossing a 3D jet flow. The robot moves from the start position (•◦)
to the goal (•◦). The solution found with the adapted FlowFMT* using 204,800 samples is shown in red
() and the optimal solution found using the OCS is shown in black ().

topology of the path for both methods is the
same. Obtaining the best path from the OCS
requires some tuning and an appropriate initial
guess. Without these two requirements, the OCS
can either take too long to converge (several min-
utes) or converge to a local optimum. We noticed
that as we increased the number of samples, the
path generated by FlowFMT* approached the
best path obtained by the OCS without the extra
work.

The absolute values of the minimum-time cost
obtained by FlowFMT* and the OCS solution
agree with the results obtained by Kularatne
et al. (2018), even though the piece-wise time
cost between vertices was obtained using differ-
ent formulations (ours is based on (Soulignac,
2011)). For comparison, considering the path from
[0.1, 0.1]T to [1.9, 0.9]T, the OCS solution obtained
by Kularatne et al. (2018) presented a minimum-
time cost of Ct(σ) = 32.87 s while their proposed
solution had Ct(σ) = 32.92 s. Meanwhile, we
observed a cost of Ct(σ) = 32.86 s using OCS (set
up with ICLOCS2), and Ct(σ) = 32.88 s using
FlowFMT*. Our method ran with 40,000 samples
to match the spatial resolution of Kularatne et al.
(2018). This indicates that both approaches gen-
erate similar valid solutions for the minimum-time
problem.

Finding the true absolute values for the opti-
mal paths considering the minimum-energy cost
function is a more difficult task in the scenario
involving gyres. Since the double-gyre flow model
has parallel streamlines that circulate the center
of each gyre, a vehicle without actuation would
just drift around the center of its current gyre,
carried by the flow. To reach a position in a differ-
ent streamline while minimizing the energy spent,
the vehicle must move from streamline to stream-
line with the minimum speed possible. In an ideal
scenario, this speed and its resultant energy cost
could be as small as we wanted. Clearly, very
small costs would also result in solutions with
an excessive final time. A discussion related to
this problem was made by Kirk (2004). We then
conclude that the true minimum energy cost is
dependent on the minimum speed that the vehicle
produces relative to the flow. This issue is not elu-
cidated by Kularatne et al. (2018) when their OCS
solution was explained. To allow the OCS to find a
solution with a finite and reasonable time, we set
the inferior limit of the vehicle’s speed relative to
the flow to 0.0001m s−1 (0.02% of the maximum
relative speed). For FlowFMT*, we do not enforce
a minimum speed since it is calculated using (10),
which will be zero only in the rare cases where the
next waypoint is completely aligned with the flow.

15

0 0.5 1 1.5 2

x [m]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
y

[m
]

(a)

0 0.5 1 1.5 2

x [m]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y
[m

]

0

5

10

15

20

25

30

35

40

45

50

(b)

0 0.5 1 1.5 2

x [m]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y
[m

]

(c)

0 0.5 1 1.5 2

x [m]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y
[m

]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
#10-5

(d)

Fig. 10: Paths planned by FlowFMT* () in a two-dimensional double-gyre flow (→) compared to the
associated optimal control problem (). On the left, we show the regions where the speed of the flow is
greater (■) and smaller (■) than the maximum speed of the vehicle relative to the flow. On the right, we
show FlowFMT* trees, with vertices colored by their costs. The minimum-time cost function was used
in (a) and (b) and the minimum-energy cost function in (c) and (d).

Figure 10(c) and (d) show that our method can
find solutions that are similar to the ones found by
the OCS. Numerical comparisons for all the paths
shown are presented in Table 2.

The average computational time spent by
FlowFMT* to compute the paths in Figure 10 was
74 s, while the OCS was “generally” able to fin-
ish in a few seconds. However, we also observed
that the OCS computational time can increase

16

0 0.5 1 1.5 2

x [m]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y
[m

]

(a)

0 0.5 1 1.5 2

x [m]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y
[m

]

(b)

0 0.5 1 1.5 2

x [m]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y
[m

]

(c)

0 0.5 1 1.5 2

x [m]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y
[m

]

(d)

0 0.5 1 1.5 2

x [m]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y
[m

]

(e)

0 0.5 1 1.5 2

x [m]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y
[m

]

(f)

Fig. 11: Comparison of FlowFMT* and optimal control in a two-dimensional double-gyre flow with an
increasing number of prohibited regions (■□): (a) 0 regions, (b) 5 regions, (c) 10 regions, (d) 20 regions,
(e) 40 regions, and (f) 80 regions. The solution trajectory computed by FlowFMT* () was found using
102,400 samples. For each scenario, two solutions were found with optimal control. The first was initialized
with a simple straight trajectory () and the second using the trajectory found by FlowFMT* ().

Table 2: Performance metric of the tra-
jectories shown in Fig. 10 computed by
FlowFMT* and optimal control method.

FlowFMT* ICLOCS2
Goal x⃗g Ct [s] Ce [µJ] Ct [s] Ce [µJ]

[1.9, 0.9]T 32.89 1.120 32.86 2.532
[1.9, 1.1]T 35.12 1.779 35.06 1.747
[1.5, 1.0]T 34.47 0.834 34.43 0.737
[1.9, 1.9]T 30.15 1.681 30.11 1.204
[0.1, 1.9]T 27.58 1.584 27.62 2.143

drastically (up to minutes) if obstacles (prohibited
regions) are added and, consequently, more active
constraints are in place, or if the problem is not
set up correctly (poor initial guess, poor constraint
limits, etc.). Furthermore, OCS solutions tend to

converge to local minima, which does not happen
with our graph-based solution. Depending on the
initial guess, the OCS solutions either get stuck in
suboptimal homotopies or show additional loops
around gyres, introducing suboptimality.

This behavior is further explored in the exper-
iment shown in Figure 11, where we incremen-
tally add randomly generated prohibited regions
to a scenario and test FlowFMT* and OCS.
The radii and center coordinates of the pro-
hibited regions are sampled from uniform dis-
tributions, U(0.02, 0.08) and U(0.0, 2.0) respec-
tively. In this experiment OCS is initialized in
two forms: 1) with a straight trajectory from
start to end, and 2) using the optimal trajec-
tory found with FlowFMT*. The optimal time

17

Table 3: Performance and computational time
metrics (in seconds) of the trajectories shown in
Fig. 11 computed by FlowFMT* and the optimal
control method (1) initialized with a straight line
trajectory between start and goal and (2) initial-
ized with the trajectory computed by FlowFMT*.

FlowFMT* OCS (1) OCS (2)

#Obs. Ct ∆tc Ct ∆tc Ct ∆tc

0 30.13 204.9 30.11 1.735 30.11 3.738
5 30.13 206.0 30.11 2.360 30.11 5.893
10 30.53 210.9 38.89 2.734 30.45 7.212
20 31.30 221.0 40.95 3.031 31.89 21.15
40 31.61 227.7 46.14 47.45 33.41 140.3
80 31.80 290.1 - >1500 32.39 1299

costs and the computational times for each test
are shown in Table 3. We observe that in the
absence or with sparse distribution of prohib-
ited regions (Figures 11(a) and (b)), OCS can
reach optimal trajectories in less time com-
pared to trajectories of the same quality with
FlowFMT*. However, as the number of prohibited
regions grows, it is possible to see the trajecto-
ries found by OCS getting trapped in sub-optimal
homotopies. Also, the computational time grows
considerably. By comparing the computational
time from situations with no prohibited regions
(Figures 11(a)) to environments with 80 prohib-
ited regions (Figures 11(f)) we noticed that the
time grows 1.4× with FlowFMT*, mainly due to
collision checking. On the other hand, the compu-
tational time grows 347.5× for the OCS initialized
with FlowFMT* trajectory. OCS with a straight
line initialization did not converge before 25min,
when it was interrupted.

The Policy-FlowFMT* in Algorithm 3 was
also compared to the solutions obtained with
ICLOCS2. First, we found trajectories from 20
random initial positions to a single final position
x⃗goal = [1.9, 0.9]T in the double-gyre environment
without prohibited regions. We provided a straight
line between the start and goal as the initial guess
for the OCS. In our algorithm, we tested different
resolutions, doubling the number of samples from
100 × 20 to 100 × 210. The results are shown in
Figure 12. It is possible to see that 2 of the 20 tra-
jectories were dissonant, with FlowFMT* finding
lower-cost solutions (in fact, better solutions). As

mentioned before, this could be solved by provid-
ing a better initial guess for the OCS. Figure 12(b)
shows how close the cost found by FlowFMT*
gets to the “true” cost found by ICLOCS2 on
the other 18 trajectories in terms of cost ratio
(i.e., Ct(σFlowFMT*)/Ct(σOCS)). As expected, the
cost ratio approaches one when the number of
samples increases. Depending on the validity of
the locally constant flow assumptions, FlowFMT*
may not find trajectories with a cost that is nec-
essarily higher than the OCS solutions. However,
as the number of samples increases, the assump-
tion becomes more valid, and the cost estimate
becomes more realistic. Figure 12(b) also shows
how the computational time to compute the pol-
icy increases as the number of samples increases.
Despite that, remember that a policy is only com-
puted once for each goal position, which can make
this time diluted among the number of future tra-
jectories that need to be computed using such a
policy.

The Policy-FlowFMT* algorithm can also be
used to compute a velocity vector field as shown in
Figure 13(b) for an environment with prohibited
regions. This figure also shows simulated trajec-
tories that illustrate how the vector field can help
recover the vehicle after an actuation fault, while
the OCS solution may lead to a collision. We con-
sidered that the OCS solution and the vector field
are both used in real-time to control the vehi-
cle. We then simulated that vehicle lost power for
10 s starting at t = 5 s. Figure 13(b) shows that
at this moment, the vehicle drifts with the flow
due to the lack of actuation. When the actuation
is recovered, the OCS solution is not valid any-
more, leading the vehicle to a prohibited region.
In the best-case scenario, if a trajectory tracker
was available, the vehicle maybe would be able to
retake the path, at the cost of suboptimality of
the resultant trajectory. In comparison, the vec-
tor field, no matter where the control is regained,
would guide the vehicle through an optimal path
from that position to the goal, as can be verified
in Figure 13(b).

4.2.2 Three-Dimensional Gyres

Figure 14 shows the vehicle’s trajectories from
x⃗start = [0.1, 0.1, 0.1]T to x⃗goal = [1.9, 0.9, 0.9]T

moving in a 3D double-gyre flow (as defined in
(16)) with prohibited regions. We compared the

18

0 0.5 1 1.5 2

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y

0

5

10

15

20

25

30

35

40

45

50

(a)

20 21 22 23 24 25 26 27 28 29 210

Number of Samples [÷100]

0

0.5

1

1.5

2

2.5

3

3.5

4

C
o

st
 R

a
tio

10-2

10
-1

10
0

101

102

103

C
o

m
p

u
ta

tio
n

a
l T

im
e

 [
s]

Max. OCS time

Avg. OCS time

Min. OCS time

(b)

Fig. 12: Policy-FlowFMT* computed over the 2D double-gyre flow environment. In (a) we compare the
solution for 20 random initial positions using our method and ICLOCS2. In (b) we show that our solution
approaches the optimal solution with more samples at the cost of more computational time.

(a)

0 0.5 1 1.5 2

x [m]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y
[m

]
N

o
so

lu
tio

n

No solution

Actuation
Restored

Actuation
Failure

(b)

Fig. 13: Comparison with optimal control: (a) Comparison of FlowFMT* and optimal control in a two-
dimensional double-gyre flow with prohibited regions (■□). Both algorithms provide similar solutions when
optimal control has a good initial guess (). However, optimal control with a bad initial guess () can
return paths with a different homotopy. (b) Comparison of Policy-FlowFMT* and optimal control for
real-time control in the presence of a disturbance. After an actuation fault, the vector field (→) created
using Policy-FlowFMT* brings the vehicle to the goal following an optimal trajectory (· · ·) while optimal
control (· · ·) leads the vehicle to cross a prohibited region.

19

0
2

0.5

1.5

1

1.5

y [m]

1.5

1

x [m]

1
0.5 0.5

0

z [m]

Fig. 14: Navigating in a 3D double-gyre flow with
prohibited regions. The Policy-FlowFMT* solu-
tion () using 102,400 samples is compared to the
solution (· · ·) obtained from a simulation using the
policy vector field (→), and the solution obtained
from an optimal control problem solver ().

performance of the optimal trajectories obtained
by Policy-FlowFMT* using 102,400 samples and
OCS (ICLOCS2). The OCS trajectory resulted in
a time cost of Ct(σ) = 28.18 s. The cost of the
trajectory obtained directly from the tree built
using Policy-FlowFMT* is Ct(σ) = 28.91 s. By
integrating the vector field resultant from the tree
generated by Policy-FlowFMT* with a 0.1 s time
step, we obtain a trajectory that reaches the goal
in 29.4 s.

5 Conclusion

This paper presented a method for finding optimal
paths and policies for holonomic vehicles moving
in the presence of strong currents. We modified
FMT* by defining new neighborhood sets that
consider the directionality of the vehicle’s move-
ment due to the flow and reduce the number of
calls to the cost function. These sets are defined
using a reachability cone that restricts the space
that can be reached when strong currents are
found (i.e., the flow speed is greater than the vehi-
cle’s relative speed to the flow). The reachability
cone is also used to define a minimum-energy cost
function for this type of environment.

Additionally, we provide simple modifications
to our original path-planning algorithm to cal-
culate global policies to a goal. By using these
methods, we can obtain paths with costs simi-
lar to the paths obtained using optimal control
techniques without significantly increasing the
computation time of the solution. Moreover, the
proposed methods highly simplify the introduc-
tion of obstacles and other constraints, guaran-
teeing that the optimal homotopy is found when
the number of samples is high enough. Finally, we
show through a simulation that the policy gener-
ated by our method is inherently more resilient
to actuation failures than optimal control. There-
fore, the methods in this paper should be preferred
over previous solutions, especially if the environ-
ment contains obstacles and when replanning is
not desirable.

Our future work includes the application of
the proposed methodology to the motion planning
problem of aerial vehicles, also known as aerobots,
for in-situ exploration of the atmosphere of Venus.
These aerobots are up to three times slower than
the superrotation winds present on the planet, and
even if they offer 3D control, their reachability is

20

constrained by the strong winds. To reach some
specific locations, the motion planner needs to
find trajectories that circumnavigate the planet.
Consequently, for this application, the algorithms
proposed in this paper need to be extended to
allow for periods of time when the vehicle loses
actuation (night side of the planet) due to the lack
of solar energy. In these regions, the method needs
to be able to let the aerobot drift passively with
the flow.

Acknowledgments. The authors thank L5
Automation, Inc. for supporting B. M. Rocamora
Jr. during the revision process of this manuscript.

Declarations

conflict of interest, availability of data, ethics
approval, funding information and author contri-
bution

Conflict of interest. The authors declare no
competing interests.

Data availability. Not applicable.

Ethics approval and consent to participate.
Not applicable.

Funding. This work was partially funded by
NASA under grant #80NSSC23M0168. B. M.
Rocamora Jr. was funded by the Statler Ph.D. Fel-
lowship while he was a student at the Department
of Mechanical and Aerospace Engineering at West
Virginia University.

Code availability. The code for this research
is available in the following GitHub repository:
https://bitbucket.org/wvufarolab/flowfmtstar

Author contribution. Conceptualization,
B.M.R.J. and G.A.S.P.; methodology, B.M.R.J.
and G.A.S.P.; software, B.M.R.J.; validation,
B.M.R.J. and G.A.S.P.; formal analysis, B.M.R.J.
and G.A.S.P.; investigation, B.M.R.J. and
G.A.S.P.; resources, G.A.S.P.; data curation,
B.M.R.J.; writing—original draft preparation,
B.M.R.J.; writing—review and editing, B.M.R.J.
and G.A.S.P.; visualization, B.M.R.J.; supervi-
sion, G.A.S.P.; project administration, G.A.S.P.;
funding acquisition, G.A.S.P. All authors have
read and agreed to the published version of the
manuscript.

References

Alvarez, A., Caiti, A., Onken, R. (2004). Evo-
lutionary path planning for autonomous
underwater vehicles in a variable ocean.
IEEE Journal of Oceanic Engineering ,
29 (2), 418–429, https://doi.org/10.1109/
JOE.2004.827837

Blackmore, L., Kuwata, Y., Wolf, M.T., Assad, C.,
Fathpour, N., Newman, C., Elfes, A. (2010).
Global reachability and path planning for
planetary exploration with montgolfiere bal-
loons. Ieee intl. conference on robotics and
automation (pp. 3581–3588).

Bonin, L., Guitart, A., Delahaye, D., Prats,
X., Feron, E. (2023). Computing opti-
mal trajectories for light soaring aircraft
using Fast Marching Tree Star. Retrieved
2023-02-13, from https://hal-enac.archives-
ouvertes.fr/hal-03923994

Chakrabarty, A., & Langelaan, J. (2013). UAV
flight path planning in time varying com-
plex wind-fields. 2013 American Control
Conference (pp. 2568–2574).

Chitsaz, H., & LaValle, S.M. (2007). Time-
optimal paths for a Dubins airplane. IEEE
Conference on Decision and Control (pp.
2379–2384).

Garau, B., Alvarez, A., Oliver, G. (2005). Path
Planning of Autonomous Underwater Vehi-
cles in Current Fields with Complex Spatial
Variability: an A* Approach. IEEE Intl.
Conference on Robotics and Automation
(pp. 194–198).

Greaves, J.S., Richards, A.M.S., Bains, W., Rim-
mer, P.B., Sagawa, H., Clements, D.L., . . .
Hoge, J. (2020). Phosphine gas in the cloud
decks of Venus. Nature Astronomy , 5 (7),
655–664, https://doi.org/10.1038/s41550
-020-1174-4 Retrieved 2023-04-04, from
https://www.nature.com/articles/s41550-
020-1174-4

21

https://bitbucket.org/wvufarolab/flowfmtstar
https://doi.org/10.1109/JOE.2004.827837
https://doi.org/10.1109/JOE.2004.827837
https://doi.org/10.1038/s41550-020-1174-4
https://doi.org/10.1038/s41550-020-1174-4

Janson, L., Schmerling, E., Clark, A., Pavone, M.
(2015). Fast marching tree: a fast marching
sampling-based method for optimal motion
planning in many dimensions. The Interna-
tional Journal of Robotics Research, 34 (7),
883–921,

Karaman, S., & Frazzoli, E. (2011). Sampling-
based algorithms for optimal motion plan-
ning. The International Journal of Robotics
Research, 30 (7), 846–894,

Kirk, D.E. (2004). Optimal control theory: an
introduction. Courier Corporation.

Koay, T.-B., & Chitre, M. (2013). Energy-efficient
path planning for fully propelled AUVs in
congested coastal waters. 2013 MTS/IEEE
OCEANS - Bergen (pp. 1–9).

Kularatne, D., Bhattacharya, S., Hsieh, M.A.
(2018). Going with the flow: a graph based
approach to optimal path planning in gen-
eral flows. Autonomous Robots, 42 (7),
1369–1387, https://doi.org/10.1007/s10514
-018-9741-6 Retrieved 2022-12-07, from
http://link.springer.com/10.1007/s10514-
018-9741-6

Kulkarni, C.S., & Lermusiaux, P.F. (2020).
Three-dimensional time-optimal path plan-
ning in the ocean. Ocean Modelling , 152 ,
101644, https://doi.org/10.1016/j.ocemod
.2020.101644

Langelaan, J.W. (2008). Tree-based trajec-
tory planning to exploit atmospheric energy.
American Control Conference (pp. 2328–
2333).

LaValle, S.M. (2006). Planning algorithms.
Cambridge University Press.

Lee, J.J.H., Yoo, C., Hall, R., Anstee, S., Fitch,
R. (2017). Energy-optimal kinodynamic
planning for underwater gliders in flow
fields. Australasian conference on robotics
and automation.

Li, W., Lu, J., Zhou, H., Chow, S.-N. (2017).
Method of evolving junctions: A new
approach to optimal control with con-
straints. Automatica, 78 , 72–78,

Martinez Rocamora Jr., B., Juan, A.P.I., Pereira,
G.A.S. (2022). Towards finding energy
efficient paths for hybrid airships in the
atmosphere of venus. Intl. conference on
unmanned aircraft systems (p. 386-393).

Nagpal, L., & Samdani, K. (2017). Project
Loon: Innovating the connectivity world-
wide. IEEE Intl. Conference on Recent
Trends in Electronics, Information & Com-
munication Technology (pp. 1778–1784).

Nie, Y., Faqir, O., Kerrigan, E.C. (2018).
ICLOCS2: Try this Optimal Control Prob-
lem Solver Before you Try the Rest. Intl.
Conference on Control (pp. 336–336).

Oettershagen, P., Achermann, F., Müller, B.,
Schneider, D., Siegwart, R. (2017).
Towards Fully Environment-Aware UAVs:
Real-Time Path Planning with Online 3D
Wind Field Prediction in Complex Terrain.
arXiv:1712.03608 [cs] , , Retrieved 2021-11-
18, from http://arxiv.org/abs/1712.03608
(arXiv: 1712.03608)

Petres, C., Pailhas, Y., Patron, P., Petillot, Y.,
Evans, J., Lane, D. (2007). Path planning
for autonomous underwater vehicles. IEEE
Transactions on Robotics, 23 (2), 331–341,

Rossi, F., Branch, A., Schodlok, M.P., Stanton,
T., Fenty, I.G., Hook, J.V., Clark, E.B.
(2021). Stochastic Guidance of Buoyancy
Controlled Vehicles under Ice Shelves using
Ocean Currents. IEEE/RSJ Intl. Confer-
ence on Intelligent Robots and Systems (pp.
8657–8664).

Rossi, F., Saboia, M., Krishnamoorthy, S., Van-
der Hook, J. (2023). Proximal exploration of
venus volcanism with teams of autonomous
buoyancy-controlled balloons. Acta Astro-
nautica, 208 , 389–406,

22

https://doi.org/10.1007/s10514-018-9741-6
https://doi.org/10.1007/s10514-018-9741-6
https://doi.org/10.1016/j.ocemod.2020.101644
https://doi.org/10.1016/j.ocemod.2020.101644

Soulignac, M. (2011). Feasible and Optimal
Path Planning in Strong Current Fields.
IEEE Transactions on Robotics, 27 (1), 89–
98, https://doi.org/10.1109/TRO.2010
.2085790

Subramani, D.N., Wei, Q.J., Lermusiaux, P.F.
(2018, May). Stochastic time-optimal
path-planning in uncertain, strong, and
dynamic flows. Computer Methods in
Applied Mechanics and Engineering , 333 ,
218–237, https://doi.org/10.1016/j.cma
.2018.01.004 Retrieved 2021-09-07, from
https://linkinghub.elsevier.com/retrieve/pii/
S0045782518300069

VEXAG (2019). Roadmap for Venus Exploration
(Tech. Rep.). Venus Exploration Analysis
Group.

Zhai, H., Hou, M., Zhang, F., Zhou, H. (2022).
Method of evolving junction on optimal path
planning in flows fields. Autonomous Robots,
46 (8), 929–947,

23

https://doi.org/10.1109/TRO.2010.2085790
https://doi.org/10.1109/TRO.2010.2085790
https://doi.org/10.1016/j.cma.2018.01.004
https://doi.org/10.1016/j.cma.2018.01.004

	Introduction
	Problem Definition
	Environment
	Robot
	Problem statement

	Methodology
	Flow-Aware Cost Functions
	Minimum-Time Cost Function
	Minimum-Energy Cost Functions

	Flow-Aware Neighborhood Sets
	Flow-Aware Fast Marching Tree
	Flow-Aware FMT*
	Computing a Policy using Flow-Aware FMT*
	 Analysis

	Experimental Results
	 Canonical Jet Flow Environment
	 Two-Dimensional Jet
	 Three-Dimensional Jet

	 Double-Gyre Flow Environment
	 Two-Dimensional Gyre
	 Three-Dimensional Gyres

	Conclusion
	Acknowledgments
	Conflict of interest
	Data availability
	Ethics approval and consent to participate
	Funding
	Code availability
	Author contribution

