
Fast Path Computation using Lattices in the Sensor-Space
for Forest Navigation

Bernardo Martinez R. Junior Guilherme A. S. Pereira

Abstract— Fast autonomous motion in cluttered and un-
known environments, such as forests, is highly dependent on
low-latency obstacle avoidance strategies. In this context, this
paper presents a motion planning strategy that relies on lattices
for the fast computation of local paths that both avoid obstacles
and follow a vector field that encodes the global robot task.
Lattices are constructed in the sensor space and represent a
set of search trees that can be quickly pruned in function of
the detected obstacles. The remaining lattice trees are used to
optimize a vector field-dependent functional, thus generating
the best free local path that tracks the field. To illustrate
the proposed approach, we present simulation and real-world
experiments of a planar robot moving in a cluttered, forest-like
environment.

I. INTRODUCTION

Real-time motion planning and navigation in cluttered and
unknown environments is one of the major challenges in
modern robotics [1], [2]. A trending example of this scenario
is the navigation of a robot under the trees canopies of
a forest, a problem that has many real world applications
including timber inventory and survey [3], [4], tracking of
forest wildfires [5], and pest detection [6].

However, autonomous forest navigation is a particularly
hard problem due to the complexity of the environment.
Forests usually have dynamic obstacles of unstructured dis-
tribution, potentially changing every time the robot visits
the scenario. Because of this dynamism and the difficulty of
constructing accurate maps of a forest, most previous forest
navigation works assume that the forest is unknown. Some
of these works have focused on finding the theoretical speed
limits for the motion [7], [8]. These papers suggest that the
robot motion is limited by the density of obstacles (trees and
bushes) in the environment, the dynamics of the robot, and
how fast the robot can perceive and plan its motion.

By considering that some of these factors are inherent
to the environment or the available hardware technology,
researchers now have been turning their attention to motion
planning, which must quickly compute feasible paths during
the flight in reaction to newly discovered obstacles. Proposed
solutions are based on sampling-based techniques for path
and trajectory planning [2], [9], [10], navigation fields [11],
precomputed alternative paths selected in real-time [12], and
the combination of several of these approaches [13].

This research is supported by the Amazon Research Awards (ARA)
program and the Benjamin M. Statler Fellowship.

Authors are with the Department of Mechanical and Aerospace of
the Benjamin M. Statler College of Engineering and Mineral Re-
sources at West Virginia University, Morgantown, WV, USA. Emails:
bm00002@mix.wvu.edu and guilherme.pereira@mail.wvu.edu

Fig. 1. Illustration of the proposed methodology. A lattice in the sensor
space encodes, in a search tree, the set of paths that the robot can take
locally. The optimal path is computed in real time by pruning the edges
of tree that are in collision and minimizing a path cost functional on the
remaining tree.

In this paper, we are considering the problem of real-
time path planning in a two-dimensional Poisson forest-like
environment densely populated with disk-shaped obstacles
representing trees. Such an environment was previously used
in [7]. The onboard sensors of the robot are limited to a
planar Light Detection and Ranging (LIDAR) sensor and
odometry. To solve the problem, we propose a hybrid motion
planner in which the global planner, based on artificial vector
fields, encodes the high-level task of the robot, and the local
planner is in charge of avoiding obstacles. For the later,
we propose the usage of a lattice in the sensor space. This
lattice encodes a search tree, which indeed represent a set of
precomputed path templates. An illustration of such a lattice
is shown in Fig. 1. To allow obstacle avoidance, the lattice
is quickly pruned using sensor measurements. By using a
cost functional that indicates how aligned a path is from
the vector field, the costs of the remaining nodes of the
search tree are computed, and the current optimal path is
selected. Our solution is inspired by the one proposed in [14],
which used RRT* to find local optimal paths that follow
the vector field. By comparing these strategies, we found
that the lattice-based solution is much more efficient than its
sampling-based counterpart, whose efficiency highly depends
on the number of collision checks performed to construct the
search tree [15]. In this paper, the search tree is constructed
off-line and pruned on-line, what shown to be a much faster
operation.

Thus, the main contributions of this work are: 1) a lattice-
based method that optimizes a local, vector field dependent,
functional for obstacle avoidance and field tracking; 2) a
method for generating a lattice in the robot’s sensor space;
3) a strategy that uses a precomputed map between sensor

978-1-7281-9077-8/21/$31.00 ©2021 IEEE

2021 IEEE International Conference on Robotics and Automation (ICRA 2021)
May 31 - June 4, 2021, Xi'an, China

1117

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n
(I

C
R

A
) |

 9
78

-1
-7

28
1-

90
77

-8
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

R
A

48
50

6.
20

21
.9

56
12

41

Authorized licensed use limited to: West Virginia University. Downloaded on October 21,2021 at 16:51:27 UTC from IEEE Xplore. Restrictions apply.

measurements and lattice edges to speed up collision checks
and tree pruning.

The rest of this paper is structured as follows: related
work is presented in Sect II. The proposed methodology is
described in Sect. III and evaluated in Sect. IV, where we
present simulations and real-world experiments. Section V
compiles the conclusions and proposals for future work.

II. RELATED WORK

This work is based on three main pillars, namely: motion
planning using vector fields, obstacle avoidance, and dis-
cretization of motion. Vector fields represent a simple way of
providing the robot with a preferred direction of motion for
each point in space. Vector fields can be easily computed
with the use of artificial potential functions (APF) [16] or
navigation functions [17]. However, using these techniques,
which consider obstacles, the vector field would change
every time the map of the environment changes. One strategy
is then to construct the vector field ignoring the obstacles
and solve obstacle avoidance in a lower level planner, as
suggested by [14] and [9]. Thus, the vector field is used to
encode the high-level specification of a task, which may be,
for example, the periodic survey of a given curve [9]. Vector
fields for curve circulation were proposed in [18].

If obstacles are ignored by the field, local motion planning
is needed to avoid obstacles and follow the vector field.
Three aspects affect the development of such an obstacle
avoidance method [19]: the type of scenario, the robot
hardware, and the avoidance technique. Two legacy obstacle
avoidance approaches that use planar sensors to measure
the surroundings of the robot are the Virtual Force Field
(VFF) [20] and Vector Field Histogram (VFH) [21]. The
former builds an occupancy grid centered on the vehicle.
Repulsive forces are calculated for each cell using the same
idea of APF but corrected with a weighting function. VFH
is an improved version of VFF that maps obstacles to a
polar graph that has peaks in directions where the obstacles
are more likely and valleys in directions that are probably
free. In a second step, it uses heuristics to choose which
valley to follow. Similar to these methods, our work uses
sensor information directly to build knowledge about free
and occupied space in the surroundings of the robot.

Another important aspect of our approach resembles the
methodologies introduced in [22] and [12]. In [22], precom-
puted relations between sensor space and planning, that were
embedded in collision detection circuits (CDCs), are used to
prune collision nodes in a probabilistic roadmap. In [12], pre-
computed alternative paths generated offline are pruned using
real-time data from the robot’s onboard sensor. Similarly,
our method uses precomputed relations to eliminate paths
in collision with obstacles. However, we chose to build a
regular discretization of the sensor’s field-of-view using trees
(graphs without cycles) that not only eliminates paths that are
in collision after pruning, but also speeds up searching for
the optimal path.

To create the tree on the sensor space, we decided to use
a lattice inspired by Bethe Lattices and Cayley trees [23].

Our approach is related to ego-graphs for path planning,
proposed in [24], state lattices that precompute a set of
actions while accounting for dynamic constraints [25], and
motion primitives [26] methods. The main difference of
our proposed discretization is that the spatial representation
of our lattice is carefully designed to obtain the mappings
between sensor measurements and the traversable paths, thus
allowing for fast pruning. Further, we use our lattice to track
the global behavior (vector field) by minimizing a function
that measures how much the paths are aligned with the field,
as is done in [14] using RRT*.

The next section will present the details of our approach.

III. SENSOR SPACE LATTICE MOTION PLANNER

We propose a motion planner that is divided in two
decoupled parts: 1) a preprocessing part that creates a lattice-
based search graph, generates the mapping between range
measurements and graph edges, and defines a global task; 2)
an online part that prunes the graph in function of the sensor
measurements, assigns costs to edges, and finds the optimal,
collision-free, path in the tree. These parts are explained next.

A. Preprocessing

In this subsection, we explain how to generate a lattice in
the sensor space, how to obtain the mappings between sensor
measurements and the lattice, and how to generate a vector
field for global planning.

1) Lattice generation: We create graph G(V,E) as a
directed tree spatially contained in the sensor space, S ⊂ R2.
The tree can be constructed recursively from the root node,
which is coincident with the origin of the sensor space. New
vertices are created in circular layers around the root. In
the first layer, the vertices are equally spaced in a circle of
radius r0 and are connected by edges coming from the root
node. The number of vertices in this layer, NT , is defined
as the number of trunks of the tree, which is equivalent to
the number of sub-trees that will be connected to the root.
Each vertex of the first and subsequent layers branch-out
to NB children vertices in the next layers. The process of
creation of vertices is repeated until the number of layers,
NL, is reached. The relationship of the layers radii is defined
by the growth ratio, K. With these parameters (namely: r0,
NT , NB , NL, and K), the polar coordinates (r, θ) ∈ S of
each vertex v ∈ V of the graph can be found from the polar
coordinates of its parent vertex as:

rnew = K(NL−l−1)r0 (1)

θnew =

(

2π
NT

)
(t− 1) if the parent is the root node

θparent +
(

2π
NT

)(
b−(NB+1)/2

(NB−1)(NL−l−1)

)
otherwise ,

(2)

where θparent = tan−1(yparent/xparent), l is the index of
the l-th layer, and t is the index of the t-th trunk, and b is
the index of the b-th branch of each trunk (see Fig. 2).

The proposed formulation is generic and will generate a
myriad of different trees. In the results shown in this paper,
we are setting the number of branches to three (NB = 3)

1118

Authorized licensed use limited to: West Virginia University. Downloaded on October 21,2021 at 16:51:27 UTC from IEEE Xplore. Restrictions apply.

vparent=(rparent, θparent)

vnew =(rnew, θnew)

θparent θnew

e(parent, new)

root layer l+1… layer l

t=1

b=1

b=1

b=2
b=3

 t=4 t=3

t=2

b=3

b=2

b=1

b=2
b=3

rnew

rparent

Fig. 2. Construction of the lattice adds vertices in layers around the sensor
origin. Each new vertex (vnew) is added according to its parent vertex
(vparent). This process is executed recursively starting from the root node,
where trunks t = 1, 2, . . . , NT are added connecting it to the first layer
of the lattice. Then, for each new layer, the leaf nodes are subdivided in
branches b = 1, 2, . . . , NB . Notice that, during this process, sub-trees are
created with coincident spatial representation for some of their vertices, as
exemplified in red and yellow.

and the growth ratio to two (K = 2). By selecting these
values, we guarantee that there will be twice the number
of circumferential discretization points in consecutive layers
and that arc lengths between successive vertices in each
layer remain constant. A lattice with this particular choice of
parameters is shown in Fig. 3. Notice that there will be more
than one vertex in the same position, but, since they come
from different trunks, they are not connected (see yellow
and red sub-trees in Fig. 2). In fact, although this generates
extra data in the graph representation, keeping the nodes
disconnected also keeps the graph as tree, which is important
for the on-line optimization we perform using the graph.

2) Sensor-to-graph mappings: After generating the lat-
tice, it is possible to create a tessellation of the region around
the origin as a mesh of non-overlapping triangles that have
exactly two of their sides coincident with the edges of the
graph. An example of such triangulation is shown in Fig. 4.
Let T be the set of triangles obtained by the triangulation.
By comparing the coordinates of the vertices that compose
each edge and the coordinates of the triangles, it is possible
to compute a map RET : T → E for which each edge e ∈ E
will have two triangles t ∈ T assigned to it. As the sub-
trees of G may overlap spatially, this will give a one-to-many
relation where each triangle will be linked to many edges.

Now, let L be the set of range measurements coming
from the sensor. For planar LIDARs, it is well known that
these measurements have a particular angular distribution.
For example, the sensor can have a beam at each 0.5° around
the 360° circumference. It is then possible to compute a map
RTL : L → T by checking which triangles can be intersected
by each range measurement. Thus, each sensor range will
have a list of triangles that need to be tested for collisions.

By composing RTL and RET we can quickly prune the
edges of the tree that are related to the obstacles detected by
the sensor. Notice that, for each range measurement, only a
few well-defined edges can be pruned.

3) Definition of the global task: The lattice-shaped tree
presented in the previous sub-section is limited to be inside
the sensor’s field-of-view. Therefore, it cannot account for
the entire robot task. In the proposed methodology, we
frame the global plan as an artificial vector field that is

Fig. 3. A lattice with (K,NT , NB , NL, r0) = (2, 16, 3, 3, 1). In black,
we see the edges that belong to the graph. In gray, the segments that together
with edges from the graph form a mesh of triangles, discretizing the sensor
space around the origin.

designed to follow curves in the workspace. Computation
of such artificial vector fields was extensively explored
in [18] and [27], where it is proposed that a vector field
in two-dimensional environment can be obtained by the
superposition of a normal component, N, which makes the
robot to converge to the curve to be followed, and a tangential
component, T, which drives the robot along the curve. The
vector field is defined for the coordinates (x, y)W in the
world frame W as:

v
(
(x, y)W

)
= N

(
(x, y)W

)
+T

(
(x, y)W

)
. (3)

With the correct choice of functions, it is possible obtain
a normalized vector field for a given curve. For example,
suppose a vector field to follow a straight line aligned with
the x-axis of the world is wanted. This field can be obtained
by taking N

(
(x, y)W

)
= 1/

√
1 + f(y)2 and T

(
(x, y)W

)
=

f(y)/
√

1 + f(y)2 where f(y) = − arctan c y, where c is a
convergence parameter.

B. Online operation

By avoiding the necessity of generating the paths them-
selves, the motion planning problem to be executed on-
line is reduced to perceiving the obstacles, pruning the tree,
assigning costs to the different paths embedded in the tree,
and choosing the best path to be followed. These steps are
presented in this section.

1) Collision detection: Let lm = (x, y)S ∈ L be the m-
th range measurement coming from the LIDAR sensor and
Cm be a circular region with robot radius rR centered at
cR = lm + dRL , with dRL being an offset representing the
translation from the sensor frame to the robot frame (we
assume that both frames have the same orientation). For each
of the triangles t ∈ T obtained from RTL (lm), a collision is
detected if t ∩ Cm 6= ∅. Computationally, this check can be
done by a function that returns true if: (cR ∩ t 6= ∅)∧ (et,i ∩
Cm 6= ∅) for i = 1, 2, 3 and false otherwise, where et,i are
edges of the triangle t. An illustration of this approach is
shown in Fig. 4.

1119

Authorized licensed use limited to: West Virginia University. Downloaded on October 21,2021 at 16:51:27 UTC from IEEE Xplore. Restrictions apply.

 O

CTG=0 CTG=∞

CTG = F1

CTG=∞

CTG=∞

CTG = F2

dL
R

root

outer layer

Fig. 4. Collision detection approach. In red, the range measurements
are transformed into circles in the sensor space that account for the robot
dimensions in the sensor frame. The triangles painted in light red overlap
with these circles and are marked as untraversable. The motion planning
algorithm chooses the path, shown in green, from the remaining edges that
minimizes the cost-to-go (CTG) from root to the outer layer.

2) Cost assignment: A breadth-first search algorithm is
used to assign the cost-to-go (CTG) for each vertex of the
graph, assuming that the CTG of the root node is zero. As the
algorithm progresses, the pair of triangles that are coincident
with the edge ξji connecting a given vertex vj with its parent
vi is checked for collision using the method of the previous
subsection. If any of these triangles is in collision, the edge
is not traversable and we assign an infinite cost to it. If there
is no collision, the CTGj of the vertex vj is obtained by:

CTGj = CTGi + F [ξji ,v] , (4)

where CTGi is the CTG of the parent vertex vi. The cost
F [ξji ,v] measures the co-directionality of the vector field v
and the edge ξji . For this, we use the upstream criterion,
proposed in [28] and [14] as the following functional:

F [ξji ,v] =
∫ 1

0

(
1− ξ

′j
i (τ)

‖ξ′ji (τ)‖
· v(ξji (τ))

‖v(ξji (τ))‖

)
‖ξ
′j
i (τ)‖dτ ,

(5)
where ξ

′j
i (τ) = ∂ξji /∂τ is the first derivative of the edge with

respect to the spatial parameterization variable τ = (x, y)W .
Notice that the derivative of the edge is constant. The cost
for the case in which the path is parallel to the field is zero
and, for the anti-parallel case, the cost is equal to the length
of the path. By using this functional, the CTG of each node
in the tree will be as low as the path from the root to that
node is “close” to the vector field.

3) Searching for an optimal path: After assigning costs,
the vertices of G that belong to the outer layer are sorted
by their CTG. By selecting the node with minimum cost
and following the back-pointers of the tree to the root node
we extract the best path of the tree. If every CTG in the
outer layer is infinite, the precedent layer is searched for
the minimum value. A minimum cost can always be found
because this procedure can be repeated until the root node
(current position of the robot), which has zero CTG. If this
case robot will stop and return failure.

IV. RESULTS

In this section, we present results from simulations and
real world experiments. For the simulated environments,

our goal was to validate the methodology and obtain some
performance parameters regarding processing time and cost
optimization. For the real world experiments, we focus on
simple experiments to demonstrate the planner.

A. Simulation results

Our methodology was first implemented in MATLAB®.
We have used the Navigation Toolbox implementation of a
range sensor to simulate a planar robot moving in a squared
forest with 120m side. Trees of diameter rtrees = 0.1m were
distributed using a Poisson distribution at different densities
ρ, as proposed in [7]. The number of LIDAR beams was
1024, the sensor range was 10m, and the measurement error
was 0.01m. The lattice used was the one in Fig. 3.

Once a path is computed as a sequence of nodes in the
lattice, the robot followed only part of this path, which
we call committed path. In our simulations, we chose the
committed path to include the first node of the planned path
only. The travel distance was obtained by using a reference
vehicle speed of 10m/s and time equivalent to the processing
time needed for the path generation. We ran our simulations
in an Intel® Core™ i7-4700MQ 2.40GHz× 8 CPU. Fig. 5
shows the computed collision-free paths for 2000 iterations
of the simulation for different forest densities.

Table I shows metrics regarding the planner and the
path found for each density in Fig. 5. As expected, the
processing time for computing the paths in each iteration
was not greatly affected by tree density (ideally, it should
only be dependent of the lattice parameters and the number
of laser beams). In fact, larger computation times for the
first lower density values is due to vector field computation
inside the functional, since fewer edges are pruned when the
environment is free. The table also shows that the cost of the
actual path (computed using (5)) increased with the density,
indicating an increasing difficulty in following the vector
field as the environment gets more cluttered, as expected.

TABLE I
SIMULATION METRICS: PROCESSING TIME AND COST.

Tree Performance parameters
Density Time per Total Cost per Total

[trees/m2] it. [ms] time [s] it. [mm] Cost [m]
0.0 82.1± 4.6 164.2 6.4± 5.7 12.9
0.1 76.2± 6.5 152.4 9.9± 20.9 19.8
0.2 70.8± 5.7 141.6 14.6± 29.5 29.3
0.3 66.6± 3.8 133.3 26.1± 53.1 52.2
0.4 66.0± 3.5 132.0 119.2± 118.5 238.5
0.5 65.6± 4.5 131.2 134.7± 139.3 266.4

B. Experimental results

We implemented and tested our motion planner in an
iRobot’s Create 2. This differential-drive robot has 0.34m
of diameter, a maximum speed of 0.5m/s and a maximum
turning radius of 2m. The robot was equiped with the
YDLIDAR X4 360-degree planar LIDAR. This sensor has
a range of 10m, with scan frequency up to 12Hz. The
angular resolution is 0.50 ± 0.02°. The robot is controlled
by a laptop with an Intel® Core™ i3 1.8GHz CPU run-
ning Linux Ubuntu 18.04 and ROS Melodic. We used the

1120

Authorized licensed use limited to: West Virginia University. Downloaded on October 21,2021 at 16:51:27 UTC from IEEE Xplore. Restrictions apply.

(a) No obstacles. (b) ρ = 0.1 trees/m2. (c) ρ = 0.2 trees/m2.

(d) ρ = 0.3 trees/m2. (e) ρ = 0.4 trees/m2. (f) ρ = 0.5 trees/m2.

Fig. 5. Computed paths for a simulated forest environment, with different obstacle densities. The artificial vector field used for all the simulations is
shown in (a), its construction is detailed in [18]. (b) shows a detailed view of the robot paths in the three times it crosses the same region.

SLAM package gmapping [29] for localization, necessary
to compute the vector field. We controlled the robot using
a simple ROS node developed in-house. Our planner was
implemented in C++ and wrapped in a ROS node.

Our tests were performed indoors using cylindrical ob-
stacles randomly placed in our laboratory. These tree-like
obstacles are supposed to simulate a cluttered forest environ-
ment. The obstacles diameters ranged between 100mm, and
350mm. In our tests, the lattice was generated using the fol-
lowing parameters: (K,NT , NB , NL, r0) = (2, 16, 3, 3, 0.4),
which was shown to be adequate to the room and obstacle
sizes. The planning range (lattice outer-layer radius) is 1.6m,
which is smaller than the LIDAR range. Therefore, any
measurement that was greater than the lattice range was
disregarded in our implementation to avoid unnecessary
computation of ranges that are far from the region of interest
(as our laboratory walls, for example). The vector field used
was the one used to follow a straight line, as exemplified in
the methodology section, with convergence parameter c = 2.

The robot was able to navigate at its maximum speed
through the forest-like environment and snapshots of the
robot navigation for one of our trials are shown in Fig. 6.
The path executed by the robot during the same trial and the
distribution of the obstacles in the map is depicted Fig. 7.
Notice that the robot tries to go back to the preferred path
(straight-line) every time it can, but it is repelled by the
cylinders. When there is no more obstacles (Fig. 6(f)), the
robot successfully returns to the desired route.

The time necessary to generate the paths compared to the
sensor frequency provides an indication of the performance
of our planner. While the data coming from the LIDAR is
streamed at a period of 200ms, the paths were generated at
32.85±7.45ms (collision: 30.20±7.64ms, cost assignment:
2.52± 0.42ms, search: 0.12± 0.01ms)1.

To compare the efficiency of our method with RRT*, used
in [14] to optimize the field-based functional, we run both
approaches in a fixed obstacle configuration. We used the
RRT* implementation provided by OMPL [30]. Since RRT*
is an anytime probabilistic planner, we ran it 100 times
for 30ms (the time spent by our method in the real-robot
experiment) and one time for 3 s, which would represent
a path very close to the optimal. In the same conditions,
our method spent 21.91ms to compute a path. Figure 8
shows the result of this experiment. Notice that the path
computed by our approach (blue) is similar to the optimal
one (dashed red), while the paths computed by RRT* with a
strict deadline (shown in gray) present a large variation. This
indicates that our method would be a better choice when a
short time is available for path planning.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a path planner that uses a lattice-
shaped search tree to represent a set of pre-computed local
paths. This lattice, which also represents a discretization of

1A video with simulations and experiments can be found at:
https://youtu.be/Axn7XRimgFU.

1121

Authorized licensed use limited to: West Virginia University. Downloaded on October 21,2021 at 16:51:27 UTC from IEEE Xplore. Restrictions apply.

(a) t = 0s. (b) t = 5s. (c) t = 10s.

(d) t = 15s. (e) t = 20s. (f) t = 27s.

Fig. 6. Sequence of snapshots of a real robot experiment. On the top we show the constructed map, real time path planned (in green), and the laser scans
(in red). On the bottom, the robot moves to the direction of the reader avoiding obstacles (white cylinders and the WVU bucket).

/scan
/map

/odom

/base_link

Fig. 7. Real robot experiment scenario. The vector field is given as white
arrows; the path executed by the robot, as an orange line; the next planned
path, as a green line; instantaneous lase scans, as red dots; obstacle, as black
dots. The /map frame is coincident with the starting position of the robot.
The /odom frame is initialized aligned with the /map, but it drifts during
execution. SLAM computes the transformation between them. The /scan
frame is at the origin of the sensor space and the /base link is at the center
of the robot.

the sensor’s field-of-view, enables fast collision checking,
elimination of untraversable paths, and cost minimization.
The approach is based on the idea that pruning a search
tree is less expensive computationally than constructing
one, which was shown to be true in our experiments. In
the simulations, the planner was tested in Poisson forest
environments for a range of tree densities. In real-world
experiments, the planner was tested with a differential drive
robot and proved itself capable of producing good paths in
approximately 30ms for an i3 CPU, indicating it can be used
for safe navigation in cluttered environments.

Future work will include expanding the workspace from
2D to 3D. Additionally, we want to take advantage of the

-2 -1 0 1 2 3 4 5 6

x [m]

-2

-1

0

1

2

y
[m

]

Fig. 8. Comparison with RRT*. In light blue, the vector field. In blue, the
planned path using our motion planner. In red, the optimal path generated
by RRT* in 3 s. In gray, paths generated by RRT* in 30ms. Obstacles are
shown in black.

independency of the collision checking computations and
implement this motion planner using an parallelized archi-
tecture using NVidia® CUDA®. During our experiments,
we noticed that homotopy of the computed path changes
depending on the obstacle configuration. To avoid this prob-
lem, that could lead to chattering behaviors, we want to add
another layer of complexity in our optimization functional,
keeping track of the path homotopy to avoid abrupt changes.
We want to test our method with faster robots, because they
would probably require smoother trajectories. For that, we
want to leverage the capability provided by our lattice of
categorizing free and occupied space and use CHOMP [31],
for example, to generate better trajectories in the free space.

1122

Authorized licensed use limited to: West Virginia University. Downloaded on October 21,2021 at 16:51:27 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Langelaan and S. Rock, “Towards autonomous UAV flight in
forests,” in AIAA Guidance, Navigation, and Control Conference and
Exhibit, 2005, p. 5870.

[2] K. Yang and S. Sukkarieh, “3D smooth path planning for a UAV in
cluttered natural environments,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2008, pp. 794–800.

[3] R. A. Chisholm, J. Cui, S. K. Lum, and B. M. Chen, “UAV LiDAR for
below-canopy forest surveys,” Journal of Unmanned Vehicle Systems,
vol. 1, no. 01, pp. 61–68, 2013.

[4] C. Torresan, A. Berton, F. Carotenuto, S. F. Di Gennaro, B. Gioli,
A. Matese, F. Miglietta, C. Vagnoli, A. Zaldei, and L. Wallace,
“Forestry applications of UAVs in europe: A review,” International
Journal of Remote Sensing, vol. 38, no. 8-10, pp. 2427–2447, 2017.

[5] L. A. Arroyo, C. Pascual, and J. A. Manzanera, “Fire models and
methods to map fuel types: the role of remote sensing,” Forest Ecology
and Management, vol. 256, no. 6, pp. 1239–1252, 2008.

[6] M. A. Wulder, C. C. Dymond, J. C. White, D. G. Leckie, and A. L.
Carroll, “Surveying mountain pine beetle damage of forests: A review
of remote sensing opportunities,” Forest Ecology and Management,
vol. 221, no. 1-3, pp. 27–41, 2006.

[7] S. Karaman and E. Frazzoli, “High-speed flight in an ergodic forest,”
in IEEE International Conference on Robotics and Automation, 2012,
pp. 2899–2906.

[8] S. Choudhury, S. Scherer, and J. A. Bagnell, “Theoretical limits of
speed and resolution for kinodynamic planning in a poisson forest,”
in Proceedings of Robotics: Science and Systems XI, 2015.

[9] A. C. Chiella, H. N. Machado, B. O. Teixeira, and G. A. S. Pereira,
“GNSS/LiDAR-Based navigation of an aerial robot in sparse forests,”
Sensors, vol. 19, no. 19, p. 4061, 2019.

[10] B. Liu, W. Feng, T. Li, C. Hu, and J. Zhang, “A variable-step
RRT* path planning algorithm for quadrotors in below-canopy,” IEEE
Access, vol. 8, pp. 62 980–62 989, 2020.

[11] D. Panagou, “Motion planning and collision avoidance using naviga-
tion vector fields,” in IEEE International Conference on Robotics and
Automation, 2014, pp. 2513–2518.

[12] J. Zhang, R. G. Chadha, V. Velivela, and S. Singh, “P-CAP: Pre-
computed alternative paths to enable aggressive aerial maneuvers in
cluttered environments,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2018, pp. 8456–8463.

[13] M. Ryll, J. Ware, J. Carter, and N. Roy, “Efficient trajectory planning
for high speed flight in unknown environments,” in IEEE International
Conference on Robotics and Automation, 2019, pp. 732–738.

[14] G. A. S. Pereira, S. Choudhury, and S. Scherer, “A framework for
optimal repairing of vector field-based motion plans,” in International
Conference on Unmanned Aircraft Systems, 2016, pp. 261–266.

[15] J. Bialkowski, S. Karaman, and E. Frazzoli, “Massively parallelizing
the RRT and the RRT*,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2011, pp. 3513–3518.

[16] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in IEEE International Conference on Robotics and Automa-
tion, vol. 2, 1985, pp. 500–505.

[17] E. Rimon and D. Koditschek, “Exact robot navigation using artificial
potential functions,” IEEE Transactions on Robotics and Automation,
vol. 8, no. 5, pp. 501–518, 1992.

[18] V. M. Gonçalves, L. C. Pimenta, C. A. Maia, B. C. Dutra, and G. A. S.
Pereira, “Vector fields for robot navigation along time-varying curves
in n-dimensions,” IEEE Transactions on Robotics, vol. 26, no. 4, pp.
647–659, 2010.

[19] B. Siciliano and O. Khatib, Springer Handbook of Robotics. Springer,
2016.

[20] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast
mobile robots,” IEEE Transactions on systems, Man, and Cybernetics,
vol. 19, no. 5, pp. 1179–1187, 1989.

[21] ——, “The vector field histogram-fast obstacle avoidance for mobile
robots,” IEEE transactions on robotics and automation, vol. 7, no. 3,
pp. 278–288, 1991.

[22] S. Murray, W. Floyd-Jones, Y. Qi, D. J. Sorin, and G. Konidaris,
“Robot motion planning on a chip.” in Robotics: Science and Systems,
2016.

[23] M. Ostilli, “Cayley trees and bethe lattices: A concise analysis for
mathematicians and physicists,” Physica A: Statistical Mechanics and
its Applications, vol. 391, no. 12, pp. 3417–3423, 2012.

[24] A. Lacaze, Y. Moscovitz, N. DeClaris, and K. Murphy, “Path plan-
ning for autonomous vehicles driving over rough terrain,” in IEEE
International Symposium on Intelligent Control, 1998, pp. 50–55.

[25] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained
mobile robot motion planning in state lattices,” Journal of Field
Robotics, vol. 26, no. 3, pp. 308–333, 2009.

[26] J. Tordesillas, B. T. Lopez, M. Everett, and J. P. How, “Faster: Fast
and safe trajectory planner for flights in unknown environments,” arXiv
preprint arXiv:2001.04420, 2020.

[27] V. M. Gonçalves, C. A. Maia, G. A. S. Pereira, and L. C. A. Pimenta,
“Navegação de robôs utilizando curvas implı́citas,” Sba: Controle &
Automação Sociedade Brasileira de Automatica, vol. 21, no. 1, pp.
43–57, 2010.

[28] I. Ko, B. Kim, and F. C. Park, “Randomized path planning on vector
fields,” The International Journal of Robotics Research, vol. 33, no. 13,
pp. 1664–1682, 2014.

[29] G. Grisettiyz, C. Stachniss, and W. Burgard, “Improving grid-based
slam with rao-blackwellized particle filters by adaptive proposals and
selective resampling,” in Proceedings., IEEE International Conference
on Robotics and Automation, 2005, pp. 2432–2437.

[30] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012, https://ompl.kavrakilab.org.

[31] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP:
Gradient optimization techniques for efficient motion planning,” in
2009 IEEE International Conference on Robotics and Automation,
2009, pp. 489–494.

1123

Authorized licensed use limited to: West Virginia University. Downloaded on October 21,2021 at 16:51:27 UTC from IEEE Xplore. Restrictions apply.

		2021-10-12T05:50:29-0400
	Preflight Ticket Signature

