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Abstract— Electric multi-rotor drones have been used to in-
spect several structures, including large buildings and dams. In
these inspections, energy consumption is a concern. To prevent
the drone from running out of battery, commercial drones
usually come back to their home position when the battery
level reaches a minimum threshold. The pilots then need to
replace the battery and use their own experience to restart the
inspection mission approximately from where it ended before
the drone returned home. Instead of relying on the human
operator, in this paper, we automate this process using behavior
trees, which is an effective way to perform autonomous mission
control and supervision. By integrating battery management
strategies into a behavior tree framework, this paper demon-
strates the drone’s adaptive and resilient decision-making when
confronted with limited power constraints. We implemented our
methodology using a commercial drone and tested the proposed
ideas in a photogrammetry-based inspection task.

I. INTRODUCTION

Autonomous inspection robots and drones can have their
behavior controlled using many different frameworks, from
hard-coding sequential tasks to a more elegant solution like
a state machine. State machines are defined through a set
of states and state transitions, which can be triggered from
predefined conditions. While state machines are a consoli-
dated component of Robotics, they fail to scale up since the
number of transitions grows fast with the number of states.
Also, every time a new state needs to be added, the entire
state machine is affected.

Behavior trees (BTs) have been proposed as an alternative
to state machines to help mitigate these issues [1]. BTs offer
a more flexible and hierarchical control system, enabling
complex decision-making through a series of behaviors and
priorities. The advantages of behavior trees can be summa-
rized into three words: hierarchical, modular, and reactive.
Behavior trees are hierarchical because depending on the po-
sition of a behavior on the tree, it will be given priority. They
are modular because modifications are locally contained, and
new behaviors can be grouped in sub-trees that can be used
across different projects. Finally, they are reactive because
the whole tree is run in a loop, and when something changes,
the final robot’s behavior can be changed accordingly. By
integrating a behavior tree, robots in inspection tasks can
show an advanced level of autonomy, ensuring efficient and
reliable navigation through complex environments.
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Fig. 1: Example of an inspection mission in a large tailing
dam (used to store waste byproducts of mining). The drone
takes off at the green dot with a mission defined by a lawn-
mower pattern path, which would lead to the blue dot when
complete. However, since the mission given by the user
was too long for the battery capacity, a low-battery event
happened. The drone decides to return to its home position
and land. After the battery was replaced, the drone resumed
the mission from the point it was interrupted. The blue path
was followed before the low battery event and the red path
after the battery was replaced.

This paper proposes the use of behavior trees to man-
age the battery level of an autonomous UAV performing
inspection of large structures, where the limited flight time
of the UAV may require battery replacements/recharges
during the mission. An example of such a scenario, which
motivates this work is shown in Fig. 1. Since most of the
inspection trajectories for large structures do not include any
information about the UAV’s battery, in some cases, the
operator needs to conduct several manual activities (e.g.,
change the trajectory, restart the recording, fly the drone
manually close to the trajectory) to resume an inspection
that was interrupted because it was too long to be executed
with a single battery. Through the behavior tree architecture,
nodes can be dedicated to monitoring and managing battery
levels as an integral part of decision-making. These nodes
can encompass actions such as periodic checks on the battery
status, assessing energy consumption rates during different
tasks, and dynamically altering the robot’s behavior based on
the remaining charge. Different from other implementations,
our tree is deployed offboard and also encodes behaviors that
allow an operator to interact with the UAV, turning it off



and replacing the battery. The drone resumes the operation
automatically after that. In this paper the objective was
to develop a BT that allows for adaptive decision-making
regarding the drone’s actions concerning its battery status,
enabling it to prioritize tasks or modify its route to ensure a
safe return within the constraints of available power.

This paper is structured as follows. Section II provides
an overview of existing behavior tree applications in au-
tonomous systems. Section III provides a brief explanation
of how behavior trees and their important components work.
Section IV presents the design of a behavior tree for the
proposed application, elucidating their hierarchical structure
and decision-making capabilities for UAV navigation and in-
spection tasks. Section V presents experiments that show the
proposed BT controlling the behavior of a commercial drone
during an inspection task, and finally, Sect. VI summarizes
key insights, highlighting the potential of behavior tree-based
autonomous systems in facilitating the inspection of large
structures.

II. RELATED WORK

Initially conceived in the gaming industry to streamline
decision-making processes for non-player characters (NPCs)
in video games [2], behavior trees (BTs) provided a struc-
tured yet flexible framework to define and prioritize various
behaviors. Their hierarchical nature allowed developers to
create complex and adaptive character actions by arranging
individual behaviors in a tree-like structure while increasing
modularity, reactivity, robustness, and safety [3], [4]. Over
time, behavior trees started being adopted outside of the
gaming industry and found applications in diverse fields such
as robotics, autonomous systems, and Al-driven simulations.
Their ability to handle dynamic and reactive behaviors led
to adoption across industries seeking intelligent decision-
making systems. Additionally, they have been proven to gen-
eralize other architectures like teleo-reactive programs [5],
sequential compositions, subsumption architecture, and state-
machines [1].

Today, behavior trees stand as a promising component in
the design and development of sophisticated autonomous
systems. It has been adopted by many Robotics compa-
nies and they have been tested in many types of robotic
systems: soccer robots [6], mobile robots [7], unmanned
aerial vehicles [3], surgical robots [8], autonomous underwa-
ter vehicles [9], manufacturing robots [10], wheeled-legged
robots [11], robotic assistive systems [12], [13] and, disaster-
response robots [14]. They have been central to the solution
that led to the “Most Sectors Explored” award of the DARPA
Subterranean Challenge [15].

A review of the application of behavior trees in Robotics
is provided by [16] and practical aspects of BTs in Robotics
are analyzed in [17]. In that review, different libraries are
compared and a suggestion of how BTs can be fit in a robotic
software architecture is provided. A survey of the use of BTs
in Robotics and Al was conducted by [18]. The authors note
that recent publications are either related to the use of BTs in
new domains in Robotics (manipulators, mobile robots, aerial
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robots, and other types of robots) and Gaming (dialogue,
platforms, FPS, and RTS games), or to their design method
(manual design, learning from demonstration, reinforcement
learning). The performance of the most important behavior
tree and state machine libraries are compared in [19]. The au-
thors note the rapid increase in BT libraries usage, especially
“py_trees” [20] and “BehaviorTree.CPP” [21], in Robotics.

Hand-crafting is a major component of designing auton-
omy frameworks, and that is not different for behavior trees.
In most applications, the BT is designed by an experienced
user, that knows how to make the robot fit for real-world
use. However, a lot of the recent developments have been
focused on creating BTs in different manners: automatic
node reordering, temporary modifications, dynamic construc-
tion, learning from demonstration, learning from experts, etc.
Utility BTs [22] have been proposed to reorder nodes in
the tree based on information about their utility (what could
be gained). Utility BTs have been extended as Stochastic
BTs [23] with the idea that the utility could consider success
probabilities.

Parallelization is another important aspect of robotic be-
haviors. While most implementations provide a parallel
node, that can trigger more than one behavior at the same
time, these behaviors are assumed to be independent. The
consequence is that parallel nodes are rarely used, because
concurrent actions may lead to unexpected problems. Con-
current BTs [24], [25] try to mitigate this issue by including
the notions of progress and resource usage. In [26], parallel
nodes were extended to achieve synchronization of parallel
tasks.

This paper applies BTs to control the execution of a drone-
based inspection task while managing the battery level. Our
proposed solution uses a state-of-the-art BT implementation
that considers parallel nodes, selectors, and sequencers. The
next section introduces these concepts, which will be needed
to completely understand our approach.

III. BACKGROUND

Behavior trees operate as hierarchical structures governing
decision-making in autonomous systems. Comprising nodes
interconnected in a tree-like fashion, they organize behaviors
into a clear and prioritized flow. An example of BT is shown
in Fig. 2. A BT is activated at a fixed frequency. When this
happens, a signal (called “tick”) traverses from the root node
down the branches, evaluating nodes based on their type and
conditions.

When a node is ticked, it can return one of three responses:
running (when the node process is ongoing), success (when
the node process has been successful in reaching its desired
behavior), or failure (when the node has failed in reaching
its desired behavior). Each traversal cycle updates the state
of the tree, allowing for dynamic responses to changing
environments or inputs.

At the top of the BT, the root node oversees the decision-
making process. Below the root node, the BT branches into
two major categories of nodes: internal nodes, also known
as control nodes, and leaf nodes, also known as execution



nodes. The most popular behavior tree libraries provide a
blackboard, which is usually implemented as a hash table,
that can store data that is shared globally with the nodes.
Internal nodes are typically: Sequence, Selector, Parallel,
or Decorator nodes. A Sequence node requires that all its
children, executed in sequence, return success so that it can
also return success. It returns failure if any of its children
fails. A Selector node requires that at least one of its children,
tested in sequence, return success to be successful. It returns
failure only if all its children also return failure. Parallel
nodes tick all of their children every time they are ticked. The
children are sequentially ticked. While some of the children
can trigger some parallel processes in the background, from
the tree’s perspective, the processes happen in a single-
threaded operation.
One recent addition to internal nodes of behavior trees is
a feature called “memory”, which is useful for nodes with
long sequences of tasks that do not need re-execution of all
their children. When a node is configured with memory, if
one of its children returns running in the previous tick, in
the next tick the node will skip the children executed before
and return directly to the one that was previously running.
Decorator nodes can only have a single child and can be
custom-made. They modify or add functionality to their child
nodes, altering their behavior dynamically. For example,
an “Inverter” decorator node will return failure when its
child returns success and vice-versa, and a “One Shot”
node will only execute its children once. Execution or leaf
nodes are typically Conditions or Actions. Conditions check
a specific variable, typically stored in the blackboard, and
return success or failure depending on the value of that
variable. Action nodes represent the lowest level of behavior,
in which the robot executes specific tasks or actions.
Although several software libraries implement BTs [19],
in this paper, we used “py_trees” [20]. The development of
“py-trees” was primarily motivated by robotics, in particular,
the higher level of decision-making for a single robot,
i.e. the scenario/application layer. The project itself was
developed in Python due to its short learning curve and faster
development cycle. It was developed for medium-scale use,
considering a single robot and hundreds of different behav-
iors. Finally, it was developed to be reactive, but not real-time
reactive. The assumption is that a real-time decision-making
process should be handled by a control layer and the higher-
level decision-making can operate with a latency of around
200 to 1000 ms, which would not produce a noticeable delay
in the perspective of the humans interacting with the robot.
Additionally, the “py_trees” project includes “py_trees_ros”,
a tree manager and predefined behaviors designed for use
specifically with the Robot Operating System 2 (ROS 2),
and “py_trees_ros_viewer” a Qt/ROS2 implementation of a
runtime visualization tool.

IV. METHODOLOGY

The basic mission for an autonomous inspection drone
can be described as follows. The mission starts with a drone
saving the home position and loading a list of waypoints
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for the inspection. The definition of the waypoints considers
the requirements of the task and the UAV payload [27],
[28], and is not discussed in this paper. After loading the
waypoints, the drone takes off and starts going to each of
these waypoints in sequence. The vehicle may take pictures,
videos, and point-cloud data while moving from waypoint to
waypoint. It may hover or return to home at the end of the
trajectory.

We propose a behavior tree (BT) that executes/coordinates
this mission but also checks for the battery state and GPS
coordinates while flying. Our proposed behavior tree, shown
in Fig. 2, works as follows. At the root of the BT, there is
a parallel node. This means that the two sides of the tree
will run every time the root is ticked. The root is ticked at
1Hz. Assuming a ROS 2 implementation, on the left, we
have subscribers to ROS topics “drone/state”, “gps/location”
and “battery/percentage”, which correspond to the drone’s
internal state (LANDED, HOVERING, etc), GPS coordi-
nates, and battery level. These nodes (StateToBlackboard,
BatteryToBlackboard, and GPSToBlackboard) listen to their
corresponding topics and save the most updated data into the
blackboard. On the right, there is a sequence of tasks that
encode the mission of the drone.

With higher priority (and executed first) there is a se-
quence sub-tree that does pre-flight tasks. First, and only
once (due to the OneShot decorator), it will set a home
position (SetHome) and request a list of waypoints (Plan),
which defines the mission, as mentioned above. Once this is
achieved, it will make sure that the drone state is “LANDED”
and take off. The take-off sequence is defined by sending the
take-off command (Takeoff), setting an initial goal (SetGoal),
and sending a command to move the drone to this goal
(simply defined by the home position here). Since these
actions are guarded by a check on the drone’s internal state,
this sub-tree does not result in any other actions until the
drone returns, lands, and needs to take off again. Notice in
Fig. 2 that some of the blocks show an encircled M, which
means that they use memory to remember from with the
child to resume if any of them return running.

The next part of the mission sequence is a selector node.
The selector node has a battery emergency sub-tree, a set
waypoint sub-tree, and an idle node as children. The battery
emergency sub-tree is only activated when the battery level
is below a predefined threshold. In this case, the tree will
execute a sequence: push the current coordinate and the
last popped goal to the list of waypoints (Replan), move
to the home location, land, and stay idle (while the battery
is changed), and, if was landed, take off after a command
from the human user (pre-flight sub-tree). Before landing,
the drone checks if it is “HOVERING”, which denotes that
it has arrived at the home location. It is important to mention
that the execution of the behavior tree continues while the
battery is replaced. In our implementation, discussed in the
next section, this is possible because the drone is controlled
by a remote computer, which is not turned off when the
battery is removed.

If no emergency is present, then the drone either sets a
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Fig. 2: Proposed Behavior Tree. The BT encodes a structured approach for a UAV conducting an inspection task. It saves
the drone state internally and executes the mission. The mission begins with pre-flight checks and then navigates through

the waypoints while the battery permits. The UAV returns to

home when necessary, ensuring a systematic and efficient

inspection process while prioritizing safety over data collection.

new waypoint or remains idle. Being idle means that it is
either still flying to a waypoint or finished the mission. A
new waypoint is set whenever the drone still has waypoints
left and is “HOVERING”, which means that the drone
has arrived at the previously defined waypoint. Setting a
waypoint is done using two behaviors: one that pops a
waypoint of the list defined by the planning behavior and
another that sets a goal for the drone waypoint follower.
Notice that, after an emergency landing, the drone takes off
and flies to where it stopped the mission since that coordinate
was saved at the top of the list of waypoints. The next section
presents the experiments performed to test the proposed tree.

V. EXPERIMENTS

This section discusses the hardware and software used to
test our methodology and present our experimental results.

A. UAV

We tested our approach with the Parrot ANAFI USA
drone. This is a high-end drone designed for the U.S. Army
and other government agencies. It is P53 certified (dust and
rain resistant), National Defense Authorization Act (NDAA)
and Trade Agreements Act (TAA) compliant, and Blue sUAS
program approved [29]. It has a maximum flight time of
32 min, a maximum horizontal speed of 14.7ms™ !, and a
maximum ascent speed of 4ms~!. The drone’s fast-charging
smart battery has a capacity of 3400mAh and can be
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charged in 2h with a USB-PD charger. The drone has two
image sensors, a digital zoom of 32, and a video resolution
of 4K/FHD/HD. The video format is MP4 (H.264) and the
photo resolutions are Wide: 21 megapixels (84° FOV) and
Rectilinear: up to 16 megapixels (up to 75.5° FOV).

B. Software

In our implementation, a behavior tree manager created
using “py-trees_ros” is integrated into a ROS 2 node. The
node connects to a bridge that communicates with the drone.
The bridge can provide information about the UAV’s sensor
data, state, etc., and also send commands to control the UAV.
Commands include arming, disarming, taking off, sending
waypoints, controlling the camera, and landing, among oth-
ers. The BT manager also communicates with a path planner
ROS 2 node that provides a list of waypoints (defined by the
user or automatically [27], [28]) that need to be followed
by the UAV. While inspection tasks may include capturing
images, collecting data, and transmitting it in real-time for
analysis, this was not considered explicitly by our BT. How-
ever, the inclusion of these behaviors is straightforward as
long as they are offered as ROS 2 services or actions. In our
experiments, this was implemented by turning on the video
capture mode of the drone upon taking off. Also, because we
used the Parrot Anafi USA drone for our tests, the bridge
used was the driver proposed in [30]. Figure 3 shows the
UAV’s control architecture. We made the developed software
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available at https://bitbucket.org/wvufarolab/
faro_behavior_trees/. Our experiments are detailed
next.

C. Results

We flew our drone in an abandoned coal ash pit. The
goal was to create a tridimensional (3D) map of the region
using photogrammetry. For this task, a lawn-mower path was
created to cover the ash pit. The waypoints are loaded from a
text file and provided to the behavior tree. They are obtained
beforehand with the aid of Google Earth as explained in
the caption of Fig. 4. To make sure that the drone comes
back home at the end of the mission, we included the home
position at the end of the file. Although this procedure is not
explicitly shown on the BT of Fig. 2, it is done in the one-
shot plan block before the flight. For this mission, we did
not use the BT to control the drone’s camera. Instead, our
code points the camera down and starts recording a video
before the BT starts running.

Since the drone’s battery allows a flight of up to 32
minutes and the ash pit to be surveyed has a small area,
we simulated an event of battery emergency by setting the
critical threshold for the battery at a high level (45%),
instead of using the threshold set internally by the drone
(around 15%). Besides that, for this specific experiment
the drone started the mission with a battery level of 61%.
Figure 5 shows the resulting trajectories using the behavior
tree proposed in Figure 2. As shown by the red line, when the
battery reaches the threshold, the drone flies back to the home
location and lands. It takes off after the battery is replaced
and resumes the mission. As can be seen in the figure, the
drone then finishes the trajectory and flies back to the home
position.

Fig 6 presents the 3D map of the area of interest obtained
from the video collected during the mission in Fig. 5.

Gcébgle Earth

Fig. 4: The mission planning. Before the experiment, the
operator selected 8 waypoints (marked 1 to 8) from Google
Earth and saved them in a file. Once the operator gets to
the experiment location (ash pit), using the drone itself, a
position is selected for the base station (S) from where the
drone is initially launched, and for the home position (H),
which is close to the base and where the drone can land
safely and the battery can be replaced.

This map was constructed with the use of the software
COLMAP [31]. Using this software, the map is created in
two steps. In the first step, the camera pose and a sparce point
cloud are computed (left-hand side of Fig 6). In the second
space, the information in the first step is then used to create a
dense point cloud (right-hand side of Fig 6). Notice that the
final map is complete, indicating that the drone followed the
entire path despite the need for battery replacement. Notice
also that, because the camera was turned on before take off,
images obtained in between the home position and the actual
inspection path were also considered for map building. This
could be avoided if camera control nodes are added to the
BT.

VI. CONCLUSIONS AND FUTURE WORK

The exploration of autonomous inspection through behav-
ior tree-driven UAVs presents a transformative approach to
enhancing safety, efficiency, and precision. In this paper,
we proposed and validated in practice a behavior tree that
provides a battery management capability, which makes the
drone return to home automatically when a certain condition
is met and resumes the mission after the battery is replaced.

In this work, we added a simple battery percentage thresh-
old to trigger a return-to-home behavior, but in our next steps,
we desire to include estimates of the required battery to finish
the remaining trajectory and return home. The BT can also
be extended to take photos, record videos, and many other
behaviors while executing the trajectory, thus proving itself
useful for inspection applications.

The inclusion of such features will support our goal of
controlling our drone in the inspection of large coal-mine
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Fig. 5: Mission performed by the drone in the ash pit. The
desired trajectory is represented by the dashed black line,
while the trajectory performed by the drone is depicted by
the green and magenta lines. The green line represents the
drone path before the low battery event. The drone takes off
from the blue dot and follows the desired trajectory until the
battery status changes to low (red dot). At this point, the
drone returns home, the battery is replaced, and the drone
continues the mission, now represented by the magenta line.
The battery percentage is also shown in different spots of
the trajectory.

tailing dams, like the one shown in Fig. 1. We expect to
create a system that performs a fully autonomous inspection
of several structures of the dam, including the embankment
and all the spillways, in a couple of hours. The current
procedure is executed by a human inspector in a couple of
days.

Future work includes the comparison between BTs and
other competitive approaches, such as state machines. An-
other promising avenue for future work involves the inte-
gration of learning techniques to design the behavior tree
architectures automatically. By incorporating reinforcement
learning or other machine learning models, UAVs could
learn and refine their behaviors based on experience and
feedback. This advancement would enable these systems
to autonomously evolve their decision-making processes,
potentially optimizing inspection strategies over time.
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