
Exploration of unknown environments with a tethered mobile robot

Danylo Shapovalov and Guilherme A. S. Pereira

Abstract— This paper presents a tangle-free frontier based
exploration algorithm for planar mobile robots equipped with
limited length and anchored tethers. After planning a path to
the closest point in the frontier between free and unknown
space, the robot computes an estimate of the future length of
its tether and decides, by comparing the anticipated length with
the minimum possible tether length, whether the path should
be followed or not. If the anticipated tether is longer than the
minimum tether by a function of the expected radius of the
obstacles, a path planner with homotopic constraints is used to
plan a path that brings the robot tether to the same homotopy
class of the shortest tether. This behavior will not only limit
the tether length but also will prevent tether entangling on
the obstacles of the environment. We evaluate our method in
different simulated environments and illustrate the approach
with an actual tethered robot.

I. INTRODUCTION

Exploration of unknown environments is one the funda-
mental problems in mobile robotics. The main goal in this
task is to quickly cover the environment with the “footprint”
of the robot’s sensors, which may be cameras, sonars, or
LiDARs. With the data obtained during the exploration,
the robot is then able to construct a map of the environ-
ment, usually using simultaneous localization and mapping
(SLAM) approaches. Although several exploration solutions
for untethered robots exist [1], no solutions have be found for
tangle-free exploration with tethered vehicles. In this paper
we solve the exploration motion planning problem with a
single tethered robot. We assume a planar robot equipped
with a retractile and limited tether. This problem is inspired
by space [2] or underwater [3] exploration missions where
small exploratory vehicles are connected to a fixed base
through a power and/or communication cable.

Path planning for tethered planar robots with finite-length
and anchored tethers was first considered in [4]. The author
presents a provable correct algorithm that uses a visibility
graph of a previously known polygonal environment to
find the shortest path between two points that respects the
tether length constraint. The tether is assumed to be very
flexible and to be always in a taut condition. More recently,
the authors of [5] presented another efficient solution for
the problem. They build a graph that encodes the possible
homotopy classes of the tether and search for the shortest
path on this graph. By the definition of homotopy, two tether
configurations are considered to be in the same homotopy

This research was made possible by the NASA Established Program
to Stimulate Competitive Research, Grant #80NSSC19M0054, and West
Virginia University Statler College.

The authors are with the Department of Mechanical and Aerospace
Engineering, West Virginia University, Morgantown, WV 26505. (e-mails:
ds0144@mix.wvu.edu, guilherme.pereira@mail.wvu.edu)

Fig. 1. Visual representation of our approach — the tethered robot in its
current position pr picks a path τr,s to reach a position pg in the frontier
between known and unknown space to minimize the tether length and avoid
future tangling. Notice that τ + τr,s is homopotic to the shortest path τs
between the base, pb, and pg .

class if they can be continuously deformed into the other
without intersecting any obstacle. An interesting character-
istic of the graph proposed in [5] is that it differentiates
situations where the robot is in the same exact location but
have different tether configurations.

The authors of [6] solved the same problem proposed
in [5]. They used a very similar idea but, instead of using
only the distance from the anchor point to identify homotopy,
which may fail in a few situations detected by the authors,
they propose an elegant and simple homotopy invariant to
construct a graph called homotopy augmented graph [7]. In
this graph, each vertex has information of both its workspace
position and the homotopy class of the path that starts at the
anchor of the tether and passes through the vertex. Once
the graph is constructed, it can be used to plan tangling-free
paths between any two points in the workspace.

It is important to mention that all the literature cited
above presented deliberative planners that assume a complete
knowledge of the environment. Thus, although the tools
developed in these papers are very useful for the general
area of motion planning for tethered robots, the proposed
algorithms cannot be directly used for exploration, which
is usually performed in a reactive or greedy fashion [1].
In exploration, the robot usually plans only a few steps
ahead, by determining the motion that will provide more
information about the environment. A classic way to do
exploration is based on frontiers [8]. In this approach a robot
increases its knowledge about the environment by moving
to points in the frontiers, which represent the boundaries
between free space and unexplored space.

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 6826

Although, by the authors knowledge, there is no previ-
ous literature that solves the motion planning exploration
problem with tethered robots, at least two works present
on-line coverage algorithms for tethered robots in unknown
environments [9], [10]. In this sense, coverage is the problem
of determining a path that passes over all points of the
workspace. When the environment is unknown, this problem
is closely related to exploration and can be viewed as an ex-
ploration problem with a sensor of very small field-of-view.
Therefore, one could directly use coverage algorithms [9],
[10] to explore an environment with a tethered robot. The
only drawback of doing this would be time, since the robot
path necessary to completely cover an environment is, for
most environments, much longer than the one necessary to
explore one. Thus, there is still a need for strategies that
efficiently explore an environment with tethered robots, as
the one presented in this paper.

The main contribution of this paper is an exploration algo-
rithm to be used by tethered mobile robots with guaranteed
tangle-free global paths. Our algorithm uses frontier-based
exploration to select the next best view for the robot. To
account for the tether, the algorithm keeps track of the tether
configuration, including its homotopy. With this information,
the robot can decide on-line what is the best motion to take to
both comply with the length of the tether and avoid tangling
around the objects of the environment. An illustration of
our approach is shown in Fig. 1. The presented algorithm
leverages on the homotopy invariant proposed in [6] and on
path planning algorithms with homotopy constraints, such
as [11], [12]. Those algorithms enforce that the planned
trajectory belongs to a specified homotopy class. In the
experiments of this paper we use a simple implementation
of RRT with homotopy constraints.

The rest of this papers is divided as follows. We formally
specify our problem in the next section. Section III intro-
duces the concepts of homotopy and homotopy invariant,
used in our exploration algorithm. This algorithm is pre-
sented and analysed in Sect. IV. Simulations in sparse and
dense environments, along with real-robot experiments are
shown in Sect. V. Conclusions and proposals of continuity
are presented in Sect. VI.

II. PROBLEM DEFINITION

Consider a tethered planar robot in an environment W ⊂
R2 populated with unknown obstacles. The robot is equipped
with a sensor whose field-of-view (footprint) is a circle
of radius r centered at the robot position. The tether is
anchored to a fixed base at position pb = (xb, yb), where
the robot will also start its motion. The tether is retractable,
so it is taut most of the time, and has a variable length
L, which is limited to a maximum length Lmax. The task
of the robot is to explore the environment, covering it as
fast as possible with its sensor’s footprint and building a
map with the obstacles found. Notice that, because the robot
tether is limited in length, regions of the environment that are
relatively far from the base cannot and are not supposed to
be explored. Assuming that a path is the continuous function

Obstacle

Obstacle 1

Obstacle 3

Obstacle 2

(a) (b)

Fig. 2. (a) Path homotopy: paths τ1 and τ2 between p0 and p1 are
homotopic while path τ3 belongs to a different homotopy class. (b) h-
signature: The homotopy class of a path can be uniquely identified by a word
formed by the label of the rays emanating from each obstacle it crosses.
In this way, the homotopy class of path τ3 is identified by h(τ3) = r2r1;
the class of τ2 is h(τ2) = ∅; and h(τ1) = r2. In the case of τ1, although
the original invariant is “r2r3r−1

3 ”, because the path crosses r3 twice and
consecutively in different directions, it can be reduced to “r2”.

τ : [0, 1] → R2, our problem is to find a short global non-
entangling path for the robot so that, given the tether length
constraint, its environment is explored. A non-entangling
path is defined as follows.

Definition 1: Considering a planar robot equipped with a
retractable tether in an environment with finite size obstacles,
a path τ(c), 0 ≤ c ≤ 1, which crosses itself at positions
pk ∈ R2, k = 1, 2, . . . , n, i.e. τ(ci) = τ(cj) = pk for
0 ≤ ci ≤ 1, 0 ≤ cj ≤ 1 and ci 6= cj , is a non-entangling
path if and only if L(ci) = L(cj), where L(c) is the length of
the tether in function of the path parameterization variable c.

By the previous definition, a robot performs a non-
entangling or tangle-free path if, for example, it starts and
finishes its motion at the same position without tangling
its tether in any obstacle of the environment. Next section
presents a background on techniques that are useful to
understand the proposed methodology, presented in Sect. IV.

III. BACKGROUND

Path planning for tethered robots is considered to be a
topological path planning problem. A key notion in topolog-
ical planning is homotopy. In this sense, two paths starting
and finishing in the same workspace position belong to
the same homotopy class if one can be transformed into
the other through a continuous set of deformations without
intercepting any obstacle in the environment. Two paths
that belong to the same homotopy class are said to be
homotopic. Figure 2(a) shows examples of homotopic and
non-homotopic paths.

Invariants, called h-signatures, that can be used as a unique
identification of a homotopy class of a path or curve are
proposed by the authors of [6]. Using the notion of h-
signature of paths, we can say that path τi is homotopic to
τj if h(τi) = h(τj), where h(·) is a function that computes
the h-signature of a path. Figure 2(b) presents illustrative
examples of h-signatures. Basically, if we assume that a
series of parallel rays emanate from the obstacles as show in
Fig. 2(b), a word is constructed by concatenating the labels
of the rays in the order they are crossed by the path. If the

6827

ray is crossed from right to left, its label is added to the
word with superscript “−1”, which can be considered to be
the “inverse” operator. After the word is complete, it can
be reduced by cancelling consecutive labels with different
superscripts. In Fig. 2(b), for example, the original word for
h(τ1) would be “r2r3r

−1
3 ”. After reduction it becomes “r2”,

which is invariant for all paths homotopic to τ1.
Important properties of the h-signature are concatenation

and inverse. Consider, for example, the existence of two
paths, τi and τj with h-signatures h(τi) and h(τj), respec-
tively. If the end of τi coincides with the beginning of τj ,
i.e. τi(1) = τj(0), so the h-signature of the composition of
both paths, τi + τj , is given by the concatenation of h(τi)
and h(τj), i.e. h(τi + τj) = h(τi)♦h(τj), where “♦” is the
concatenation operator. On the other hand, the h-signature of
a path followed in the opposite direction is the inverse of the
original h-signature, i.e. h(−τi) = h(τi)

−1. It is important to
mention that the inverse of h-signature “r2r3”, for example,
is given by “(r2r3)−1 = r−1

3 r−1
2 ”. More details on the h-

signature algebra can be found in [6].

IV. METHODOLOGY

A. Basic Idea

The proposed algorithm for exploration with tethered
robots uses traditional frontier-based exploration [8], which
works by sequentially moving towards the closest point at
the edge between known and unknown space (frontier) until
there are no more frontiers to explore. In our case, the
algorithm also stops if the tether length prevents the robot
to reach any frontier. To avoid tangling while exploring, the
algorithm keeps track of the size and homotopy of the tether.
At each step, after the closest frontier to move is selected
using simple Euclidean distance as a metric, two paths are
computed: a shortest path from the base (τs), which would
represent the shortest tether; and the shortest path from the
robot’s current position to the goal (τr). The second path is
concatenated to the current robot path (τ), which represent
the current tether approximation, and is optimized to generate
a prediction of the tether the robot would have if it had took
that path. The length of both tethers (shortest and predicted
tethers) are then compared. If the second one is longer by
more than a tolerance value (∆L) or it exceeds the tether’s
maximum physical length (Lmax), the algorithm computes
a new path for the robot (τr) that is the shortest path in
the homotopy class of the conservative path that, before
exploring a region, returns to the base to avoid tangling.
When the robot follows this path, its tether will assume the
form of the shortest path from the base. This would make
the retractable tether to have the smallest possible length.

B. Algorithm

Our approach for tether-aware exploration is formally
presented in Algorithm 1, which requires both the current
position of the robot, pr, and the position of its base (i.e. the
tether anchor), pb, as well as the maximum allowed tether
length, Lmax, and the length tolerance, ∆L. Line 1 initiates
frontier (F), free space (Cf), obstacles (O), and the current

Algorithm 1: Tether-aware exploration algorithm.
input: pr , pb, Lmax, ∆L

1 F ←− Cf ←− O ←− τ ←− ∅;
2 [F , Cf ,O]←−LOOKAROUND(pr , F , Cf ,O);
3 while F 6= ∅ do
4 do
5 pg ←− SELECTNEARBYFRONTIER(pr , F);
6 if pg = ∅ then
7 return Cf ,O;
8 end
9 τs ←− SHORTESTPATH(pb, pg , Cf);

10 while L(τs)> Lmax;
11 τr ←− SHORTESTPATH(pr , pg , Cf);
12 if (L(τ + τr) - L(τs)) > ∆L or L(τ + τr) > Lmax then
13 h∗ ←− h(τ)−1♦h(τs);
14 τr ←− SHORTESTHPATH(pr , pg , h∗, Cf , O);
15 end
16 if τr = ∅ then
17 τr ←− [τ(−1) , τ(−2)];
18 end
19 pr ←− FOLLOWPATH(τr);
20 τ ←− τ + τr;
21 [F , Cf ,O]←−LOOKAROUND(pr , F , Cf ,O);
22 end
23 return Cf ,O;

tether approximation (τ) as empty sets. The map related
variables are then passed to the “LookAround” function
in line 2, which initiates the first view around the robot
before proceeding to the main loop. Function “LookAround”
processes the data of the robot’s sensors and updates the map
with frontier, free space, and obstacles. It basically traces
out rays from the robot position (pr) up to the end of the
sensor field of view, ending either in an obstacle, a frontier,
or nothing (if going through an explored area).

The main loop (Lines 3 to 22) continues until either there
are no more frontiers to explore, or until no more frontiers
can physically be reached with a given Lmax. The latter
condition is being defined in lines 6 through 10, with line
7 explicitly breaking the loop and returning current known
free space and obstacles in case no more frontiers could be
physically reached. Line 5 selects the nearest point at the
frontier as the next goal for the robot (pg) by computing
the shortest Euclidean distance between the current robot
position (pr) and the set of frontiers. Line 9 computes a
shortest path from the base, pb, to pg , and line 11 computes
the shortest path from the robot’s position, pr, to pg . Line 12
checks if either ∆L or Lmax constraints would be violated. It
is important to notice that function L(·), which computes the
length of a path, should be intelligent enough to simplify the
path (without changing its h-signature) before computing its
length. If the shortest path (τs) and predicted path (τ + τr)
lengths are too different or the predicted path is too long, the
algorithm calculates in Line 14 a path with homotopy h∗ that
would return the robot to the shortest tether configuration.
For this, h∗ would be the h-signature that represents the
homotopy class of a path that would retreat to the base by
following the tether (path −τ , which is the reverse of τ) and
then take the shortest path τs to pg . As shown in Line 13

6828

of the algorithm, h∗ is computed using the properties of the
h-signature presented in Section III as:

h∗ = h(τ)−1♦h(τs) . (1)

Notice that by following a path with h-signature h∗ the
robot does not return to the base but, the tether, which is
retractable, will assume the same configuration as it would
have if the robot had returned to the base. Line 17 is a
fail-safe that initiates a single-point backtrack in case the
previous path computations failed. In this line τ(−1) and
τ(−2) are respectively the last and the second last waypoints
of the current tether approximation. Subsequent lines control
the robot to follow the computed path (Line 19), add that
path to the total path record so it is used as a current
tether approximation (Line 20), and update the map with
information gathered at the robot’s new position (Line 21).

C. Analysis

It is important to notice that Algorithm 1 is complete. In
this sense, we consider that an exploration algorithm for teth-
ered robots is complete if the robot not only explores all the
area that it can physically reach with the tether, but also does
so without tangling the tether around any obstacles. Because
we are using the frontier-based exploration approach, the first
requirement will always be satisfied by Algorithm 1 due to
the nature of this approach — the robot will continue to pick
goals on the frontier until it either runs out of frontiers to
sample (all the area is successfully explored), or there will
be no more frontiers it can physically reach with the tether
(available area is successfully explored).

As for the second requirement, the path will be kept
tangle-free provided that the length tolerance, ∆L, used as
input of the algorithm, is correctly chosen. In the limit, as
∆L goes to zero, the algorithm would always conform to
the shortest path to the goal from the base, leaving no room
for tangling. This, however, is not a very efficient approach,
and would require a lot of unnecessary backtracking towards
the base. Otherwise, as ∆L goes to infinity, the robot would
only be returning to the shortest path if the maximum tether
constraint Lmax would be violated. If Lmax also approaches
infinity, the robot would start ignoring the tether altogether.
This is very efficient for an unconstrained robot, but with the
tether it will highly increase the probability of tangling.

Thus, a good balance between these extremes is necessary
for both efficient and tangle-free planning. If we assume a
point robot and a circular obstacle of radius R, we can define
the maximum value of ∆L to guarantee tangle-free path
planning. Notice that the shortest possible length that will
result in tangling would be larger than the full circumference
around the obstacle, giving the maximum length tolerance
for tangle-free paths to be 2πR. Any value less that this
will still guarantee a tangle-free path, but very low values
would trigger more often the necessity of moving backwards
by following the paths in the homotopy class h∗ (Lines 12
to 14 of our algorithm). Thus, we would want ∆L to be
closer to 2πR, where R would be the radius of the smallest

expected obstacle when this obstacle is represented in the
robot’s configuration space.

In fact, given the nature of this algorithm and frontier-
based exploration, it could be argued that reducing the length
tolerance all the way down to its theoretical guaranteed limit
might be unnecessary, given that it’s extremely unlikely for
the sole path to be strictly around an obstacle — it will
generally be far longer than that, triggering the shortest path
conforming anyway.

Notice that Algorithm 1 does not rely on any specific path
planner or map representations. Therefore, the computational
complexity of the algorithm will vary and will depend on the
choice of algorithm used. It is important to observe that the
complexity of functions “ShortestPath”, called at least two
times, and “ShortestHPath”, called eventually, will directly
influence the complexity of the proposed approach. From
our previous discussion, the larger ∆L is, the less times
“ShortestHPath” will be called, yielding in a less complex
algorithm. The map representation is also important to be
discussed. It will not only affect the complexity of the path
planning functions, but also will determine, in the loop of
lines 4 to 10, how many times “ShortestPath” will be called
to check if a point in the frontier is reachable by the tethered
robot.

In the next section we present experiments that evaluate
the proposed algorithm and illustrates some of the discus-
sions of this section.

V. EXPERIMENTS

This section presents simulations and real robot experi-
ments that evaluate our approach. Algorithm 1 was imple-
mented in Python. We used RRT for path planning (Lines 9
and 11 of Algorithm 1) and a modified version of RRT for
planning with homotomic contraints (Line 14). In the latter,
once we have a new random sample, we try to connect it to
the current tree using only edges whose homotopy invariant
symbols belong to the desired homotopy invariant, h∗. A
similar idea was used in [11] for RRT*. It is important to
mention that RRT is not an optimal planner and, therefore,
does not necessarily compute the shortest path. So after the
path is found we run a simple post-processing algorithm to
reduce its size [13]. We noticed that this did not change
the expected behavior of the proposed algorithm, although
we plan to replace RRT by an optimal planner in future
implementations. To map the environment, we used a grid
where the cells could assume four states: obstacles, free
space, frontier, and unexplored. For path planning, obstacle
and unexplored cells are considered to be the same (obsta-
cles) and all other cells are seen as free space. Notice that
although the map is discrete, both versions of RRT work in
the continuous free space.

A. Simulations

We evaluated the performance of Algorithm 1 in a sim-
ulated 20 × 20 m environment with random obstacles. The
map of the environment used a grid resolution of 0.5 m. We
have two situations: 15 to 20 obstacles with radius up to 2 m;

6829

(a) (b)

Fig. 3. Typical environments used in our simulations. (a) 15 to 20 random
obstacles shown in black. The tangle-free path used by the robot to explore
the environment using our method is shown in yellow. (b) 60 to 70 random
obstacles shown in black.

TABLE I
SIMULATED RESULTS WITH THE ENVIRONMENT IN FIG. 3(A).

Tolerance
∆L (m)

Tangle
(%)

Time per
iteration (s)

Max tether
length (m)

Total path
length (m)

Backtrack 0 0.50 ± 0.09 26.48 ± 2.60 1181.4 ± 93.4
0 0 2.07 ± 0.56 33.18 ± 7.06 224.0 ± 60.2

2πR 0 2.04 ± 0.68 31.36 ± 4.45 216.6 ± 40.1
4πR 5 ± 2 2.13 ± 0.51 33.29 ± 3.96 196.4 ± 30.0
8πR 28 ± 4 2.32 ± 0.65 37.10 ± 2.50 199.3 ± 25.8
16πR 43 ± 5 2.32 ± 0.71 39.30 ± 2.01 215.1 ± 49.0
∞ 73 ± 4 2.56 ± 0.77 39.77 ± 0.80 225.6 ± 53.5
∞

(no limit) 93 ± 3 2.17 ± 0.49 78.83 ± 14.85 129.3 ± 15.3

60-70 obstacles with radius up to 0.5 m. Typical examples of
these situations are show in Fig. 3(a) and (b), respectively.
All simulations were executed using an AMD Ryzen 9
3950x processor clocked at 4100 MHz on a computer running
Windows 10.

Tables I and II show numerical values of simulations for
both kinds of environments. In these simulations the tether
length Lmax was set to be 40 m. In the tables, we compare our
method with a conservative exploration strategy that avoids
tangling by always retreating along the tether back to the base
before exploring a new region (Backtrack), and a standard
frontier exploration that ignores the tether (∞, no limit). This
case was simulated by making the length tolerance and tether
length to be very large in our algorithm (∆L = Lmax =∞).
We also evaluate the effect of parameter ∆L, which is varied
in function of the minimum obstacle radius R. The results
shown in the tables were obtained as average and standard
deviation of 40 exploration runs per line.

Backtrack, besides guaranteeing tangle-free paths, resulted
in the longest total path and required the smallest tether
length, as expected. As discussed in Section IV-C, our
method resulted in tangle free paths for ∆L ≤ 2πR, with a
still small tether length and paths five times shorter than the
ones obtained by backtracking. As ∆L increases, the maxi-
mum recorded tether length approaches Lmax. This happens
because the max tether trigger (Line 12 of the algorithm,
second condition) generally overtakes the tolerance trigger
(Line 12, first condition), also resulting in progressively more
tangling. An interesting phenomenon could also be observed
in the total path length — while it starts decreasing at first,

TABLE II
SIMULATED RESULTS WITH THE ENVIRONMENT IN FIG. 3(B).

Tolerance
∆L (m)

Tangle
(%)

Time per
iteration (s)

Max tether
length (m)

Total path
length (m)

Backtrack 0 0.56 ± 0.07 27.79 ± 4.89 1504.4 ± 267.9
0 0 2.60 ± 0.52 28.53 ± 3.21 350.4 ± 58.8

2πR 0 2.49 ± 0.52 31.07 ± 3.63 283.8 ± 42.8
4πR 28 ± 4 2.57 ± 0.63 33.13 ± 3.49 267.1 ± 37.0
8πR 80 ± 4 2.95 ± 0.62 38.46 ± 1.44 283.1 ± 40.6
16πR 80 ± 4 3.09 ± 0.59 39.76 ± 0.21 312.9 ± 60.8
∞ 88 ± 3 3.29 ± 0.54 39.86 ± 0.14 329.9 ± 61.9
∞

(no limit) 100 3.26 ± 0.72 108.97 ± 34.89 159.9 ± 34.9

reaching its minimum at around ∆L = 4πR, it then goes
back up, reaching around the same value at ∆L = ∞ as
it did at ∆L = 0. This is explained by increased length
tolerance ∆L causing the robot to stray increasingly farther
from the shortest path (possibly tangling in the process),
requiring a more substantial backtrack in order to return
to the minimum tether length situation. This also explains
the correlation between increasing length tolerance ∆L and
increasing computation time. A path that has strayed too far
from the optimum generally has more homotopic constraints
associated with the return path, causing the modified RRT
implementation (Line 14 in the algorithm) to spend more
time to find a path constrained to h∗. While the total path
values in Table I are all still technically within the margin of
error of each other, this phenomenon is a lot more prominent
in Table II, obtained with the denser environment. The
exception is the last entry, when the path length reduced dra-
matically because the tether length constraint was removed,
which also resulted in a near-100% tangling rate.

B. Actual robot implementation

Our methodology was also tested with an iRobot’s Cre-
ate 2 robot using a VICON system for localization. The robot
is controlled by a Netbook with Intel Core i3, 1.8GHz and
4 gigabytes of memory that runs Linux Ubuntu 18.04. A
retractile clothesline was used to simulate the tether. For
this demo, the robot sensor was simulated as a circle of
70 cm radius centered on the robot. The maximum tether
length was set to be 4 m and the tolerance ∆L to be 0.8 m,
which is smaller than the actual theoretical minimum of
approximately 2 m and considers the radius of the robot
(0.17 m) and of the smallest obstacle (0.15 m). Figure 4
shows a picture of the robot and Fig. 5 shows snapshots
of the experiment while the robot explores a small 3 × 3 m
environment with a circular and a rectangular object. Observe
that the robot explores the entire environment and returns
to the base by following a tangle-free global path. For the
sake of comparison, Fig. 6 shows the final trajectory of the
robot when it executes a standard frontier-based strategy
(∆L = Lmax =∞). The environment is completely explored
but the tether ended up tangled around the obstacles. A video
with other demonstrations accompanies the paper and can be
found at https://youtu.be/2lRHnf43T9g.

6830

Fig. 4. Tethered robot used in the experiments of this paper.

Fig. 5. Six snapshots of a real robot experiment. From left to right and top
to bottom, the robot starts close to the base and maps the whole environment,
returning to the base without tangling. The planned path is represented in
yellow, the actual robot trajectory in green, and the tether estimate in purple.
While the discovered free space is represented in white, light gray areas
represent unknown space, cyan areas are the frontiers, and the obstacles are
plotted in black.

VI. CONCLUSIONS

This paper presented a tether-aware exploration algorithm
for tethered planar mobile robots. The algorithm is based
on frontier based exploration and is guaranteed to provide
tangle-free global paths. Our simulated results show that the
length of the final robot path is only about 50% longer than
the one provided by algorithms for robots without tether, and
is approximately four to five times shorter than the trivial and
conservative solution that always bring the robot to the base
before it explores new regions of the workspace.

Future work will include the extension and implementation

Fig. 6. Final configuration of a real robot experiment that uses standard
frontier based exploration and ignores the presence of the tether. Notice that
the tether estimate (represented in purple) circulates the obstacles when the
robot returns to the base.

of the method to 3 dimensions, as our final goal is to work
with tether-powered drones. Although the proposed algo-
rithm itself can be directly used in 3D, homotopy invariants
and path planning with homotopy constraints are not so
simple in higher dimensions, specially when the obstacles
are not known a priory. Those points will be considered for
further investigation.

REFERENCES

[1] D. Holz, N. Basilico, F. Amigoni, and S. Behnke, “Evaluating the
efficiency of frontier-based exploration strategies,” in ISR 2010 (41st
International Symposium on Robotics) and ROBOTIK 2010 (6th Ger-
man Conference on Robotics), 2010, pp. 1–8.

[2] P. Abad-Manterola, I. A. D. Nesnas, and J. W. Burdick, “Motion
planning on steep terrain for the tethered axel rover,” in IEEE
International Conference on Robotics and Automation, May 2011, pp.
4188–4195.

[3] J. Yuh, “Design and control of autonomous underwater robots: A
survey,” Autonomous Robots, vol. 8, no. 1, pp. 7–24, Jan 2000.

[4] P. G. Xavier, “Shortest path planning for a tethered robot or an
anchored cable,” in IEEE International Conference on Robotics and
Automation, 1999, pp. 1011–1017.

[5] T. Igarashi and M. Stilman, “Homotopic path planning on manifolds
for cabled mobile robots,” in Algorithmic Foundations of Robotics IX:
Selected Contributions of the Ninth International Workshop on the
Algorithmic Foundations of Robotics, D. Hsu, V. Isler, J.-C. Latombe,
and M. C. Lin, Eds. Springer Berlin Heidelberg, 2011, pp. 1–18.

[6] S. Kim, S. Bhattacharya, and V. Kumar, “Path planning for a tethered
mobile robot,” in IEEE International Conference on Robotics and
Automation, May 2014, pp. 1132–1139.

[7] S. Bhattacharya, M. Likhachev, and V. Kumar, “Topological con-
straints in search-based robot path planning,” Autonomous Robots,
vol. 33, no. 3, pp. 273–290, Oct 2012.

[8] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in IEEE International Symposium on Computational Intelligence in
Robotics and Automation, July 1997, pp. 146–151.

[9] I. Shnaps and E. Rimon, “Online coverage by a tethered autonomous
mobile robot in planar unknown environments,” IEEE Transactions on
Robotics, vol. 30, no. 4, pp. 966–974, Aug 2014.

[10] L. S. R. Mechsy, M. U. B. Dias, W. Pragithmukar, and A. L.
Kulasekera, “A novel offline coverage path planning algorithm for a
tethered robot,” in International Conference on Control, Automation
and Systems, Oct 2017, pp. 218–223.

[11] D. Yi, M. A. Goodrich, and K. D. Seppi, “Homotopy-aware
RRT*: Toward human-robot topological path-planning,” in 2016 11th
ACM/IEEE International Conference on Human-Robot Interaction,
March 2016, pp. 279–286.

[12] E. Hernandez, M. Carreras, and P. Ridao, “A comparison of homotopic
path planning algorithms for robotic applications,” Robotics and
Autonomous Systems, vol. 64, pp. 44–58, 2015.

[13] H. M. Choset, S. Hutchinson, K. M. Lynch, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of robot motion: theory,
algorithms, and implementation. The MIT Press, 2005.

6831

