2023 American Control Conference (ACC)
San Diego, CA, USA. May 31 - June 2, 2023

Imitating Swarm Behaviors by Learning Agent-Level Controllers

Ibrahim Musaddequr Rahman'”
Yu Gu*

Abstract— A main challenge in swarm robotics is the un-
known mapping between simple agent-level behavior rules and
emergent global behaviors. Currently, there is no known swarm
control algorithm that maps global behaviors to local control
policies. This paper proposes a novel method to circumvent
this problem by learning the agent-level controllers of an
observed swarm to imitate its emergent behavior. Agent-level
controllers are treated as a set of policies that are combined
to dictate the agent’s change in velocity. The trajectory data
of known swarms is used with linear regression and nonlinear
optimization methods to learn the relative weight of each policy.
To show our approach’s ability for imitating swarm behavior,
we apply this methodology to both simulated and physical
swarms (i.e., a school of fish) exhibiting a multitude of distinct
emergent behaviors. We found that our pipeline was effective
at imitating the simulated behaviors using both accurate and
inaccurate assumptions, being able to closely identify not only
the policy gains, but also the agent’s radius of communication
and their maximum velocity constraint.

I. INTRODUCTION

Research on robotic swarms has gained considerable at-
tention for applications where robustness, scalability, and
flexibility are desired, as it allows simple robots with limited
information to execute tasks far beyond their combined
individual capabilities. A fundamental challenge that is faced
by engineers when designing swarm controllers, however,
is the nontrivial mapping between local agent-level policies
and the swarm’s global emergent behavior [1]. This makes
the design of individual behaviors that result in an intended
collective behavior a main challenge in swarm robotics,
for which there is currently no general solution [2]-[4].
Consequently, controller development is usually done in an
iterative, trial-and-error process, guided by designer intuition,
experience, and skill [4]-[6]. In this paper, we propose a
method to design the controllers of individual members of a
robotic swarm by learning the observed modes of motion of
another group of robots or animals.

Swarm robotics is inspired by the behavior of social
animals like ants, termites, birds, and fish [1], [5], [6]. An
influential early approach to reproduce the flocking motion

This work was supported in part by the National Science Foundation
Research Experience for Undergraduates Program, Award #1851815, and
West Virginia University Statler College.

“The first two authors contributed equally to this work. 'Department
of Electrical Engineering and Computer Science, University of Michigan,
Ann Arbor, MI, USA. 2Department of Mechanical Engineering, University
of Mississippi, University, MS, USA. 3Lane Department of Computer
Science and Electrical Engineering, West Virginia University, Morgantown,
WYV, USA. “Department of Mechanical and Aerospace Engineering, West
Virginia University, Morgantown, WV, USA. Emails: iamr@umich.edu, se-
white5 @go.olemiss.edu, kec0035@mix.wvu.edu, yu.gu@mail.wvu.edu, di-
mas.dutra@mail.wvu.edu, and guilherme.pereira@mail.wvu.edu.

979-8-3503-2807-3/$31.00 ©2023 AACC

Stanford White TVZ"
Dimas A. A. Dutra*

Katelyn Crockett?

Guilherme A. S. Pereira*

Step 1

Simulate or Process Agent
Trajectories

Step 3

Optimizing Gains of Features

Step 2
Learn Motion Constraints
& Neighbor Radius

Step 4

Full Imitation Output

Fig. 1: Learning Pipeline for Swarm Imitation.

of large numbers of bird-oid objects (Boids) for computer
graphics was based on postulating the basic behaviors fol-
lowed by each individual [7], such as cohesion, alignment,
and separation. This idea, inspired by an understanding of
natural swarms, has been applied to design the guidance of
robotic swarms for various tasks [8].

More recently, several approaches that learn the underlying
individual controller policies from motion data of existing
swarms have been proposed. This allows imitation learning
of decentralized robot control from centralized demonstra-
tions [9], [10] and learning robot motion patterns from
observations of animal motion [11], [12]. Most existing
solutions for data-driven swarm imitation utilize Neural Net-
works. Graph Neural Networks (GNNs) have been utilized
to parse the system of communicating networks, where each
agent is a node with edges connecting to each agent in its
communication radius [9], [10]. Such GNNs frequently also
have layers of Recurrent Neural Networks (RNNs) to account
for any action in the controllers that relates to previous states
[11], [13]. A more recent approach utilizes Knowledge-
based Neural Ordinary Differential Equations (KNODEs) to
accomplish swarm imitation [12]. This approach allowed for
the embedding of prior knowledge about the local agent
controller and allows a simple neural network to approximate
the local agent behavior in conjunction with it. However,
similar to other Neural Network-based controllers, agent-
level controller policies may not be well-defined on the entire
input space, which may result in unexpected behavior of
individual agents.

Swarm controllers have also been modeled as a linear
combination of specific features of an agent’s neighborhood,
such as polynomials of the distance between agents or to a
centroid, and Bayesian optimization has been used to train a
parameter matrix to model the behaviors of a swarm with the
same features [14]. However, this approach may be limited in
that it requires a complete understanding of which nonlinear
features are important to a given swarm before training.

A useful imitation paradigm for swarms would therefore
be capable of quantitatively decomposing swarm behavior
into distinct controller policies which have a clear interpre-
tation. A decomposition of this nature would provide insight
into the relationship between local and global behaviors. In
this work, we introduce an imitation pipeline capable of
decomposing swarm behavior by observing the trajectories
of agents in a swarm. Figure | presents the steps of the
method, which is characterized by treating agent controllers
as a set of policies that can be combined to determine the
agent’s change in velocity over a given time step.

In our framework, the policies are linearly combined and
then saturated, making the controller linear in the parameters
over a range of inputs. Over a subset of the data linear regres-
sion can then be used as a first pass to identify the strength
(gain) of each policy, and global optimization methods can
be employed to refine the results. In parallel, an algorithm
is employed to identify the radius of communication be-
tween swarm agents, and the maximum observed velocity is
recorded directly after processing the trajectory data. Due to
the relative simplicity of each step in the proposed pipeline,
the results of the decomposition are understandable and
insightful at each step. By applying our method to both
simulated and natural swarms, we demonstrate that it is
capable of learning maximum observed velocity and radial
communication constraints between swarm agents as well
as correctly identifying and assigning weight to individual
controller policies.

This work provides several unique contributions: First, we
provide a pipeline for swarm imitation that is explainable
at every stage, allowing for a straightforward interpretation
of the results. Additionally, our pipeline is the first that is
capable of inferring the radius of communication between
local agents. Our methodology has been proven effective
by application to both simulated and vision-tracked natural
swarms. The pipeline has a potential impact in many areas
where decentralized swarms hold advantages over centralized
swarms where communication links cannot be broken. This
includes the use of large drone swarms in search and rescue
and military applications.

The rest of this paper is organized as follows: the problem
solved by our method is defined in the next section; Sect. I1I
presents details of the proposed method, which is evaluated
in sections IV and V using simulated and real-world data,
respectively; Finally, conclusions are presented in Sect. VI.

II. PROBLEM DEFINITION

The objective of this work is to design a simple algorithm
to learn the agent-level controllers of an observed swarm
in order to imitate its emergent behavior. We consider 2D
swarms that fulfill a certain set of constraints. First, they
exhibit the defining characteristic of a swarm: the controller
for each agent is decentralized. Additionally, this controller
is dependent only on the actions of neighbors within a certain
radius, r, and the local environment (e.g., boundaries). We
assume that this radius is unknown. We also assume that
each agent ¢ is a single integrator controlled by it’s velocity

v;. Furthermore, we assume that v; depends only on the in-
stantaneous positions and velocities of the agent’s neighbors.
Thus, there is no memory over time.

Finally, the agents motion is constrained to a bounded en-
vironment and is subjected to a maximum observed velocity.

III. METHOD

The fundamental idea behind our method involves mod-
eling the local agent controller v; as a linear combination
of policies 0, where each policy is a nonlinear function
of the velocities and positions of neighboring agents and
environmental factors such as boundaries. The unsaturated
controller of agent ¢ is then written as:

vi(k,0) =k, (1)

where k is a vector of parameters that weigh each policy,
which we assume is common to all the agents in the
swarm. The policies are constrained to a set that contains
social policies: cohesion (C), separation (S,.), alignment
(A), rotation (R), and steer-to-avoid (S;); and non-social
policies: boundary separation (W), boundary steer (I¥;), and
inertia (). These policies are illustrated in figures 2 and 3.

Among the social policies, cohesion, separation, and
alignment are consistent with their original definitions in
Boids [7]. To represent additional behaviors exhibited by
several swarms, we also included rotation, which causes
agents to orbit each other in either a clockwise or counter-
clockwise direction depending on the sign of the weight, and
steer-to-avoid, which ensures that agents dodge each other
by changing their direction to avoid collisions. To compute
each social policy, the agents consider the adjacent neighbors
within a radius, such that the neighborhood set A; of agent
7 is defined as

—pill};

where p; and p; represent the 2D positions of agents ¢ and j,
respectively. The social policies for agent ¢ are then defined
as:

Ni={ilr = llp;

LW
‘N|Zp‘j pZ’
Wil

Z Hpj p; IIe“’

IV | 2

:7‘71 y
[p. — Pl

where p; and v; are the respective 2D position and velocity
of each agent in agent ¢’s neighborhood, v; is agent i’s
current velocity, p, is a future colliding agent in the path of
the current velocity, e is an integer number, and the L symbol
denotes the orthogonal vector on the counterclockwise side.

Cohesion

Alignment

Separation

Rotation Steer To Avoid

GG,

Fig. 2: Agent Social Control Policies

Boundary Separation Boundary Steer Inertia

OO0

Fig. 3: Agent Non-Social Control Policies

The non-social policies include boundary separation and
boundary steer, which cause agents to separate and steer
away from the enclosure walls. Additionally, inertia causes
agents to continue moving with their current velocity. Those
policies are defined as:

w,= P-4
|d —p;|? ;
Wt:(dc_pi)l7 ®)
I:Viv

where d is the displacement vector to the closest point on
the boundary, and d. is the displacement vector from the
boundary along the current direction of motion.

In order to accomplish imitation of an observed swarm,
a multi-step process is proposed in this paper (see Fig. 1).
First, the trajectory data of the known swarm is collected and
processed to extract and estimate positions and velocities of
each individual agent. For example, in practical situations,
this can be done by using a computer vision based tracking
system [15]. With the positions and velocities of the known
swarm, observational data such as the communication and
motion constraints are inferred. The relative strengths (gains)
of each control policy can then be determined with linear
regression and refined with nonlinear optimization, which
also enforces the maximum observed velocity constraint.
By combining each of the learned parameters, a complete
imitation can be created, and several metrics are used to
measure its validity. The next subsections present details on
this process.

A. Learning Communication and Motion Constraints

The agents’ maximum observed velocity can be deter-
mined by direct analysis of the available data (i.e., taking
the maximum of all velocities). When working with real data
that may have anomalies due to sensor noise (e.g., vision),
the 99 percentile of the velocity can be taken instead.

To determine the radius of communication, we minimize
the 1 step prediction error of a controller trained with first
pass linear regression at a given radius. Because the space
is discontinuous and nondifferentiable, the following search
algorithm is used: In the first iteration, a number (e.g., 15)
of random radii are selected from the search space, and for
each of them a cost value is computed. To create the next
set, the best solutions (e.g., top 6) are selected, and random
variations of these are used to replace the rejected radii. This
process is repeated for some number of iterations (e.g., 10
times), and the best solution in the final set is selected.

To compute the cost for each radius, we begin by calcu-
lating the influence of each policy (equations (2) and (3))
for each agent at each timestep, based upon the estimated
radius. The linear regression step of our imitation pipeline
(shown in Sect. III-B) is then applied at this specific radius,
outputting a set of weights for each policy. The cost of this
radius and its respective weights are then evaluated as the
sum of the error for a 1-step trajectory prediction:

SN E

i=0 t=0

i(k, 0i(t, 7)))

where n is the number of neighbors (agents inside the
current radius 7), k is the vector output gains from the linear
regression, v; (¢) is the observed velocity of agent ¢ at time
t, and 0;(t,r) is the vector of policies for agent i computed
at time ¢ with the current radius 7. Because agent motion
has a velocity constraint on it, the behavior is not linear to
the policies when at maximum velocity. As such, datapoints
at maximum observed velocity are ignored in this step.

B. Learning Policy Weights

Our method requires a two step optimization. Due to the
linearized form of (1), linear regression is initially performed
to identify the initial weights (gains) of each policy in the
controller. In this step, datapoints at maximum observed
velocity are ignored. To consider the maximum velocity
saturation, the initial gains are refined through a nonlinear
optimization step that includes the maximum observed ve-
locity constrained datapoints. This constraint is encoded as:

v
o(v) = { Tv] Vmax

where o is the constrained version of v.

For the optimization problem, our proposed cost function
considers the difference between the change in velocities of
agents in the observed swarm and the learning swarm:

%ZZ Iv: (e
=01

[V] < Umax
[V] > Umax

&)

o(vi(k,0:)I . (©)

The optimization problem is then formally posed as:

k = argmin L(k).
k

(7

To minimize L(k), vector k obtained with linear regression
is utilized as the first-pass guess for Sequential Least Squares
Programming (SLSQP) in the SciPy library [16], [17].
SLSQP is a nonlinear optimization method that minimizes
an input function by iterating through various estimated
inputs until it returns approximate zero values. A nonlinear
optimization algorithm that does not use boundaries was
desired because the scale of the policy weights should not
be assumed. Unlike many other nonlinear optimization meth-
ods, SLSQP operates without any user-provided boundaries
around the estimated input values, which automates the
algorithm and removes any initial guess bias. For this reason,
it was chosen as the nonlinear optimization method most fit
for the complete pipeline’s purpose.

C. Imitation metrics

Several numerical metrics are considered in analyzing the
efficacy of an imitation. When the policy weights are known
for both the original and imitated swarms (only possible in
controlled simulations), a direct comparison of their values
can be made. In order to compare the emergent behaviors
entirely based on trajectory data, however, we consider three
separate metrics. First, the Mean Absolute Error (MAE)
between the predicted velocity change and the real velocity
change across all timesteps is used to show how similarly
individual agents acted compared to agents in the original
swarm. This is the same loss function in (6), used in the
nonlinear optimization step of our pipeline. So:

MAE = L(k) . (8)

Notice that the difference of predicted and real velocity
change is equivalent to 1-step trajectory prediction, as the
problem is modeled as first order.

We also consider the metrics of Average Minimum Dis-
tance (AMD) and Average Velocity Difference (AVD), as
proposed by [12]. The AMD to a neighbor measures how
cohesive agents in a swarm are over time. For swarms
exhibiting pure flocking behavior, for example, AMD should
converge to a fixed value. AMD is given by:

I~ .

AMD(t) = ~ ;mjmllpi(t) p; (0l ©)
where ¢ is the current timestep, n is the number of agents,
and p; and p; are the positions of agents ¢ and j, respectively.
The AVD between swarm agents measures how similar the
velocity vectors are across all agents. For swarms exhibiting
pure flocking behavior, AVD is also expected to converge to
a constant value. It is given by:

D lvi(®) = vl

i#]

AVD(t) = (10)

n(n —1)

where v; and v; are the velocity vectors of agents 4 and j.

10

(a) Original Swarm (b) Imitating Swarm

Fig. 4: Imitation of pure Boids exhibiting flocking behavior
(MAE: 10625.575)

IV. SIMULATIONS

Our pipeline was applied to several different types of both
simulated and physical swarms. Videos of such simulations
and experiments can be watched at: https://tinyurl.
com/acc2023.

In order to verify the efficacy of the pipeline, swarm
simulations were created, which can exhibit any behavior
derivative of the policy set. Training data was generated
consisting of 40 agent, 5 seconds simulations in a 10m by
10m enclosure. Simulations were considered with varying
maximum velocities and communication radii. Training sim-
ulations were generated with Gaussian noise on positions
to emulate robotic sensor noise, with a magnitude of 5%
of the maximum displacement per timestep. Many short
simulations were favored over a single long one, since the
transient behavior of the swarm is assumed to be more
descriptive of the agent controller policies. In steady-state
flocking behavior, agents move in unison, and certain policies
are not clearly demonstrated/activated.

A. Imitating with Same Feature Set

To verify the pipeline’s efficacy upon data that fits its
assumed model, in this subsection the set of policies in
the learning set consisted only of policies in the simulated
swarm, which were assumed to be known.

In our first experiment, we consider a simple, fundamental
case of a swarm of Boids with the policies of cohesion (C),
separation (S,2), and alignment (A). The weights of these
policies were set to k& = [1.00, 1.00, 1.00], the maximum
velocity vmax was 7m/s, and the radius r was 5 m. As shown
in Fig. 4b, our methodology was effective at imitating the

(a) Original Swarm (b) Imitating Swarm

Fig. 5: Imitation of Boids exhibiting flocking behavior with
boundary steer and separation (MAE: 7617.865)

emergent behavior of the swarm. The parameters identified
by our method were k = [1.37, 1.36, 1.31], Upyax = 6.19m/s
and 7 = 4.98 m. By analyzing the trajectories, it is evident
that the same distinct flock and direction of motion was
preserved in the imitating swarm. Moreover, the AMD and
AVD against time plots demonstrated that agents across the
two swarms converged to the same average distance and
heading. It is notable that AMD and AVD are mostly smooth
and overlapped with some minor deviations.

To show the behavior of our method when the swarm
includes nonsocial policies, such as separation (W,) and
steering away (J/;) from boundaries and obstacles we
created a Boids simulation that, besides C, S,o, and A,
includes W, and W, policies, in this order. We used
k = [1.00, 1.00, 1.00, 1.00, 1.00], vmax = 7.00m/s and
r = 5.00m, the trajectories of which are seen in Fig. 5a.
Similarly to the pure Boids case, the pipeline was effec-
tive at identifying the parameters with high precision as
k = [0.98, 0.99, 0.99, 1.10, 0.94], vmax = 8.02m/s and
r = 5.0l m, the trajectories of which are seen in Fig. 5b.
The AMD and AVD plots, compared to the pure Boids
case without nonsocial controller policies, exhibited a more
oscillating behavior. The general trend of the behavior was
preserved in the imitation, which in both the AMD and AVD
cases oscillated with roughly the same frequency, magnitude,
and average value.

B. Imitating with an Incomplete Policy Set

It is expected that natural swarms exhibit behaviors that
are similar to commonly used heuristics but with fundamen-
tally different natures. For example, several different inverse

1

(a) Original Swarm (b) Imitating Swarm

Fig. 6: Imitation of Boids exhibiting flocking behavior with
differing kinds of separation and different policy set. (MAE:
28002.142)

power laws (different e values in (2)) can be used to calculate
separation, which all act along the same line of action but
are linearly independent. In order to evaluate our pipeline
on data whose behavior is not perfectly represented in the
feature set, in this section we show simulations generated
with controller policies that were not in the set used for
learning.

First, we considered a simple case where the imitation
pipeline assumed the incorrect inverse power law and a
nonidentical set of policies. The trajectories observed in
Fig. 6a were generated using the policies C, S,¢, and A with
k = [1.00, 1.00, 1.00], vmax = 7.00m/s, and = 5.00m. On
the other hand, the trajectories observed in Fig. 6b were gen-
erated using our pipeline with the policies C, S,2, A4, and R.
The imitated policy set was k = [2.10, 1.13, 1.37, —0.46],
Umax = 7-83, and r = 4.96. The values of the imitated policy
set demonstrate the principle that the emergent behavior is
not entirely dependent on the absolute values of the controller
policies and that it can be obtained with an imperfect set
of policies. The trajectories observed in Fig. 6 exhibit the
same cohesive behavior across both the original and imitated.
The policy set k& of the imitated swarm accomplishes this
behavior, however, by increasing the value of both C' and
Sre in order to compensate for a different mode of separation
introduced by S,. Moreover, the introduction of rotation
R into the policy set resulted in its introduction into the
policies of the imitated swarm, but it was compensated by
the increased alignment A. The observed differences can be
viewed in both the trajectories, AMD plots, and AVD plots.
The trajectories in Fig. 6b show a mild oscillating behavior

(a) Original Swarm (b) Imitating Swarm

Fig. 7: Imitation with a partially overlapping policy set. The
original swarm had C, R, and S,.5, and the learning algorithm
with C, A, Sya, St,R, I, W, and W;. (MAE: 4760.562)

compared to those in Fig. 6a. That effect exacerbated the
differences observed in the AVD plot, especially, since the
oscillation results in slightly different headings despite the
agents traveling in the same general direction. The difference
in the separation parameter resulted in a small, yet noticeable
difference in the AMD plot, where the imitated swarm tended
to flock slightly more closely than the original swarm.

In another simulation, we show that our method allows
the imitation of swarm behaviors whose controller policies
are a proper subset of the imitation policies considered in
the learning algorithm. In this case, the estimated gains
for the unused policies of the original swarm should be
close to zero. We considered a swarm exhibiting rotational
behavior, with the controller policies C, R, and S, in
that order, with £ = [1.00, 1.00, 1.00], vymax = 5.00m/s,
and r = 6.00m. The swarm behavior is shown in Fig. 7a.
We then try to imitate the behavior with the complete set
of controller policies, C, A, Syo, Si,R, I, Wy, and W;.
The parameters of the imitated swarm shown in Fig. 7b
are k = [1.37, 0.00, 1.38, 0.00, 1.38, —0.38, —0.02, 0.00],
with vyax = 5.15m/s, and r = 6.05m. As expected, the
unutilized policy gains returned a value close to zero. The
gains that were utilized were slightly overestimated, but
as shown by the trajectories, the behaviors of the imitated
swarm closely matched the original. Moreover, the AMD
has a similar behavior to the original in terms of convergent
flocking distance. The AVD converged to a larger value, but
the effect on the trajectories was negligible. This result shows
that the imitation pipeline is effective at identifying which
features are unnecessary to imitate different swarms.

12

(a) Fish Initial Trajectories (b) Fish Imitated Trajectories

Fig. 8: Imitation of a fish swarm through the pipeline. (MAE:
73858.041)

V. FISH SWARM EXPERIMENT

Finally, our pipeline was utilized on a real-life swarm.
To imitate the swarm behavior, the proposed methodology
used data from a 100 guppy fish swarm [18], collected with
the TRex vision tool [15]. The used video is 60 seconds
long with 1900 viable frames, providing 190,000 points of
agent motion data. The natural fish motion consists of short
jumps followed by a still period (see video at https:
//tinyurl.com/acc2023), which is different than the
continuous motion model used in our existing controller
policies. To filter these discrete jumps into a continuous
stream of motion, a low-pass filter was applied to the fish
velocities extracted from the video before they were used in
training. Due to the unknown nature of an individual fish’s
motion, we used a two-pass approach to better approximate
their set of control policies. The first pass is done with all the
features we had available (equations (2), with e = 2, and (3)).
Then, the policies with larger gains (> 0.1) were selected. A
final pipeline run was done with only these specific features,
which were found to be Alignment (A), Rotation (R), and
Inertia (I).

The parameters of the imitated swarm were found to be
k =[0.59, 0.17, 0.37], Umax = 5.65cm/s, and r = 5.08cm.
The trajectories observed in figures 8a and 8b presented
some visual differences. The primary difference was that the
initial swarm tended to exhibit more erratic (noisier) behavior
compared to the imitation, which was found to be smoother
and without sudden changes in motion direction. These
differences can be also observed in the AMD and AVD plots.
The AMD of the imitation swarm tended to underestimate

but was not significantly dissimilar to the original swarm.
The AVD plot, however, resulted in a more jarring difference.
AVD measures the alignment of the swarm, and the behavior
of the original swarm was erratic, so the AVD tended to be
high compared to the imitation. It is also notable that the
trendlines of both AMD and AVD follow a similar pattern
over time, implying similar dynamics in how the overall
swarm moves.

A better imitation can likely be achieved through the in-
clusion of additional controller policies that take into account
the erratic behavior of fish. It is worth noting, however, that
the purpose of this experiment is not to create a perfect
imitation of the neurological processes of the guppies, but
rather to decompose their behavior into simple controller
policies that are able to be implemented in real robots. The
presented imitation accomplishes this using only three simple
controller policies, which are enough to preserve the general
trends of the swarm’s motion.

VI. CONCLUSION AND FUTURE WORK

We have introduced an effective, multi-step machine learn-
ing pipeline to decompose and imitate swarm behavior. Our
algorithm was the first one that explicitly identified the radius
of communication and the velocity constraints. Additionally,
our algorithm was the first to accomplish swarm imitation
without utilizing neural networks, offering greater inter-
pretability and transferability to other problems. Compara-
tively, we have offered an imitation method that decomposes
swarm behavior into understandable controller policies. We
have demonstrated the efficacy of our algorithm by applying
it to a variety of different swarm behaviors, which were
generated both artificially and naturally. Specifically, we have
shown near-perfect imitation from swarm trajectory data that
fits its assumed model. Furthermore, we have shown the
effectiveness of the pipeline on simulated swarm data that
does not fit the assumed model as well as on physical swarms
that exhibit comparatively complex behaviors. Global swarm
behavior can now be decomposed and analyzed at an agent
level, which is instrumental in informing agent controller
design decisions and understanding the relationship between
local and global swarm behaviors.

We did not conduct any stability analysis, however, our
model has bounded output due to the velocity constraints.
Additionally, the decomposition into separate policies would
allow for simpler analysis in future work, as opposed to more
complex approaches. Because we frame agent controllers as a
combination of social and non-social policies, this method’s
applicability expands beyond the simple examples shown.
To improve the modeling of 2D swarms, such as the school
of fish in this paper, more self-interested non-social poli-
cies may be considered. More complex situations involving
higher dimensional motion, or environmental interactions
like pheromone deposition or structure building, could have
equivalent policies used to model the motion of other existing
swarms such as ants or bees.

This work can be expanded by implementing the learned
controllers in robots, utilizing modern machine learning

13

techniques to generate controller policies by isolating policy
contributions that cannot be approximated with the existing
feature set, and adapting the pipeline to accomplish online
imitation learning. These are some of the lines that we
consider for future research.

REFERENCES

[1] J. Werfel, K. Petersen, and R. Nagpal, “Designing collective behavior
in a termite-inspired robot construction team,” Science, vol. 343, no.
6172, pp. 754-758, 2014.

D. Bozhinoski and M. Birattari, “Designing control software for
robot swarms: Software engineering for the development of automatic
design methods,” in Proceedings of the st International Workshop
on Robotics Software Engineering. Association for Computing
Machinery, 2018, pp. 33-35.

——, “Towards an integrated automatic design process for robot
swarms,” Open Research Europe, vol. 1, p. 112, 2021.

M. Birattari, A. Ligot, and K. Hasselmann, “Disentangling automatic
and semi-automatic approaches to the optimization-based design of
control software for robot swarms,” Nature Machine Intelligence,
vol. 2, no. 9, pp. 494-499, 2020.

M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm
robotics: a review from the swarm engineering perspective,” Swarm
Intelligence, vol. 7, no. 1, pp. 1-41, 2013.

M. Dorigo, G. Theraulaz, and V. Trianni, “Reflections on the future of
swarm robotics,” Science Robotics, vol. 5, no. 49, p. eabe4385, 2020.
C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in Proceedings of the 14th annual conference on Computer
graphics and interactive techniques, 1987, pp. 25-34.

N. K. Long, K. Sammut, D. Sgarioto, M. Garratt, and H. A. Abbass,
“A comprehensive review of shepherding as a bio-inspired swarm-
robotics guidance approach,” IEEE Transactions on Emerging Topics
in Computational Intelligence, vol. 4, no. 4, pp. 523-537, 2020.

S. Zhou, M. J. Phielipp, J. A. Sefair, S. I. Walker, and H. B. Amor,
“Clone swarms: Learning to predict and control multi-robot systems by
imitation,” in 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 1EEE, 2019, pp. 4092—4099.

E. Tolstaya, F. Gama, J. Paulos, G. Pappas, V. Kumar, and A. Ribeiro,
“Learning decentralized controllers for robot swarms with graph neural
networks,” in Conf. on robot learning. PMLR, 2020, pp. 671-682.

H. M. Maxeiner, “Imitation learning of fish and swarm behavior with
recurrent neural networks,” Ph.D. dissertation, Master’s thesis, Freie
Universitét Berlin, 2019.

T. Z. Jiahao, L. Pan, and M. A. Hsieh, “Learning to swarm
with knowledge-based neural ordinary differential equations,” 2021.
[Online]. Available: https://arxiv.org/abs/2109.04927

E. Zhan, S. Zheng, Y. Yue, L. Sha, and P. Lucey, “Generative multi-
agent behavioral cloning,” arXiv, 2018.

S. Jacobs, R. M. Butts, Y. Gu, A. Baheri, and G. A. S. Pereira,
“A framework for controlling multi-robot systems using bayesian
optimization and linear combination of vectors,” 2022. [Online].
Available: https://arxiv.org/abs/2203.12416

T. Walter and I. D. Couzin, “Trex, a fast multi-animal tracking
system with markerless identification, and 2d estimation of posture
and visual fields,” eLife, vol. 10, p. 64000, feb 2021. [Online].
Available: https://doi.org/10.7554/eLife.64000

D. Kraft, A software package for sequential quadratic programming.
Koln, Germany: Berichtswesen d. DFVLR, 1988.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, I. Polat, Y. Feng,
E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors,
“SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python,” Nature Methods, vol. 17, pp. 261-272, 2020.

T. Walter, A. Albi, D. Bath, H. Hugo, F. Oberhauser, M. Groettrup,
and D. Mink, “Reproduction Data for: TRex, a fast multi-
animal tracking system with markerless identification, and 2D
estimation of posture and visual fields,” 2020. [Online]. Available:
https://doi.org/10.17617/3.4y

[2]

[3]
[4]

[5]

[7]

[8]

[9]

[10]

(11]

(12]

(13]

[14]

[15]

[16]

[17]

[18]

