
Robotica: page 1 of 19. C© Cambridge University Press 2020
doi:10.1017/S0263574719001838

Navigation of Semi-autonomous Service
Robots Using Local Information and
Anytime Motion Planners
Guilherme A. S. Pereira†∗ and Elias J. R. Freitas‡
†Department of Mechanical and Aerospace Engineering, West Virginia University, 1374 Evansdale
Drive, Morgantown, WV 26506-6070, USA
‡Federal Institute of Minas Gerais, Rua Jose Benedito 369, Santa Efigenia, Itabirito, MG 35450-000,
Brazil

(Accepted December 14, 2019)

SUMMARY
This paper deals with the problem of navigating semi-autonomous mobile robots without global
localization systems in unknown environments. We propose a planning-based obstacle avoidance
strategy that relies on local maps and a series of short-time coordinate frames. With this approach,
simple odometry and range information are sufficient to make the robot to safely follow the user
commands. Different from reactive obstacle avoidance strategies, the proposed approach chooses a
good and smooth local path for the robot. The methodology is evaluated using a mobile service robot
moving in an unknown corridor environment populated with obstacles and people.
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1. Introduction
With the recent development of robotics, service robots are becoming closer to people, being increas-
ingly present in our work, study and leisure environments.1 A peculiarity of some of these robots is
that they can be directly commanded by a person, as is the case of intelligent wheelchairs,2 robots
that must follow people3 or driving assistant systems of automobiles.4 This paper is mainly inter-
ested in semi-autonomous robots that have the human being responsible by the mission control and
the robot itself responsible for other specific tasks, specially safety.

Because they are controlled by a person, semi-autonomous robots differ from other service robots
in at least three points: (i) they do not need a global map of their workspace (except when mapping
is part of their tasks); (ii) they do not need to know the main objective of the mission or their final
metric destination; (iii) they do not need to globally localize themselves in the workspace. In spite of
these differences, semi-autonomous robots still need to avoid collisions with obstacles, other robots
and people, preserving themselves, their workspace and their users. Therefore, the biggest challenge
for the development of semi-autonomous service robots is to guarantee the robot safe navigation in
unknown and changing environments.

For the sake of motivation, consider, for example, the situation where a robot enters a building
for the first time with the objective of delivering a package to a given office. No global map of the
environment is available (unknown environment), people are moving around the building (changing
environment) and no global information is available (e.g. GPS data). Since the robot does not know
how to reach the office, it needs to ask for human help. In this case, a human (e.g. the doorman) could
lead the robot to its destination, what would require the robot to track the human while avoiding
possible obstacles. More interesting, the robot could receive from the doorman a set of high-level,
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Fig. 1. An illustration of the proposed methodology. The black rectangle represents the semi-autonomous ser-
vice robot, the small blue squares are laser sensor readings and the vector field is represented by arrows. An
anytime motion planner (red graph) is used to locally compute the shortest collision free path that follows the
vector field as close as possible.

human-like commands such as follows: follow this corridor until the second intersection, turn right
and enter the second door; and execute it autonomously. Notice that the later option is similar to
the way a person would behave in an unknown building. Observe that moving toward the destination
using such a strategy is viable even without a global map and global localization, requiring only basic
sensing capabilities such as corridor, intersection and door detection. One of the objectives of this
work is then to propose and evaluate a robot navigation strategy that solves this kind of problem.

Since the beginning of robotics, navigation strategies for robots have been proposed.5–8 These
strategies were classified as reactive, when the robot reacts to the presence of recent detected obsta-
cles without trying to predict the consequences of its action, or deliberative, when the robot, using
maps of the environment, plans a path that not only avoids the obstacle, but also explicitly considers
its mission.

Because reactive strategies are very efficient and do not require global localization or com-
plex models for obstacles and workspace,9, 10 they are the first choice to guide semi-autonomous
robots.11–15 However, since these strategies do not consider the future, they can lead the robot to
undesirable situations that may result in long paths or even in a deadlock. Deliberative strategies,
such as refs. [16] and [17], on the other hand, plan or re-plan paths that consider not only the clos-
est obstacle, but also a future horizon.18 These approaches may generate optimal safe paths, but in
opposition to reactive strategies, depend on global maps of the environment and global localization.31

These requirements, which are inherited by hybrid approaches that combine deliberative and reactive
methods,19 may be hard to be fulfilled by some semi-autonomous robots, such as smart wheelchairs
moving in unknown environments.11

The main contribution of this paper is the proposition of a novel and efficient navigation archi-
tecture for semi-autonomous service robots that uses motion planners and does not require global
localization nor global maps. To avoid the requirement for global localization, the proposed strategy
uses a sequence of short-time local coordinate frames. These frames, which are forgotten in hundreds
of milliseconds, are only used by the robot to plan a path in its field of view and to follow the last
path planned. Because the time between two coordinate frames in the sequence is very small, low
uncertainty coordinate transformations between these frames may be obtained with standard wheel
odometry. If complete path planners are employed, our strategy guarantees static obstacles avoidance
and, within a given region of the sensor’s field, may also allow the avoidance of moving obstacles.
Since we are considering semi-autonomous robots, we use artificial vector fields to encode the user
commands as desirable robot behaviors.9 These fields may include cultural and social behaviors
expected for the robot. For each human command, the planner uses a vector field in its optimiza-
tion functional to find the safe path that better follows the required behavior. An illustration of the
proposed method is shown in Fig. 1. In this figure, the arrows represent a vector field that encodes
the “go straight” user command while the red lines represent the search tree used by the planner,
from which was found the green path to be followed. In this example, the robot is required to follow
the corridor close to the right wall, which is the social rule in several countries. The planner used
in this example was the one proposed in ref. [20], with a few modifications. This planner is based
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Fig. 2. Navigation architecture proposed in this work.

on RRT* (the asymptotically optimal version of the rapidly exploring random tree (RRT)21), which
generates the red tree in Fig. 1. Although we have successfully used this planner in our work, it could
be replaced in our approach by any other anytime motion planner. In this context, an anytime motion
planner is a planner that rapidly computes a feasible path, and optimizes this path if more time is
available. By the authors’ knowledge, the proposition of this paper, which was motivated by practi-
cal difficulties encountered in the operation of robots in different unknown environments, is new. All
other motion planning-based approaches, such as ref. [22], which also considers social rules, require
global metric localization, what in practical situations is difficult to obtain.

Given this, the authors believe that this paper presents the following contributions:

• an architecture for semi-autonomous navigation of service robots in unknown workspaces that
does not require a global map or a global localization system;
• an approach based on a series of local coordinate frames to allow the use of motion planners for

obstacle avoidance without global localization;
• the use of vector fields to encode simple human commands and their local modification using

anytime motion planners.

Next section is dedicated to describe the proposed methodology in details. Section 3 shows the
experimental setup used to validate the method. Sections 4 and 5 show the experimental results that
illustrate our approach, respectively, using simulations and an actual robot. Finally, conclusions and
future work are discussed in Section 6.

2. Methodology
The navigation approach proposed in this paper may be pictured as the block diagram of Fig. 2.
In this figure, it is possible to see that a human user defines the next mission to be executed by the
robot. Since we assume a nontechnical user, all missions are defined by a sequence of simple human-
like commands such as “turn left,” “turn right,” “go straight” and “stop.” These commands could be
given by one of several possible interfaces, including voice, touch screens, brain machine interfaces
and eye or head trackers. These interfaces are very useful when the user is close to or even on the
robot, as is the case of an intelligent wheelchair, or controlling it remotely based on images from a
camera mounted on the robot, as the ones available on exploration robots. In situations like these,
we assume that, except for some preemptive commands, such as “stop,” the robot waits for a new
command after the execution of the previous one is finished. To prevent the robot to stop between
two commands, a small buffer with up to three commands may be used to store a sequence of user
commands. With this approach, notice that the user is part of the robot’s control loop and is the main
responsible for the definition of its main mission. If the user is remote and knows the sequence of
commands a priori, as is the case of delivery robots in a map known by the user, for example, the
commands may be also given as a sequential list, where one command is executed after the previous
one is completed. This second strategy was used in our experiments to facilitate reproducibility.
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Notice in Fig. 2 that the top arrow referred as command is divided in two. Complicated and
long duration commands are encoded using vector fields that are then used by the planner, as will
be explained in Section 2.3. Other simple commands, such as the “stop” command, are executed
directly by a mission MANAGER, which is the block responsible for the low-level interaction with
the robot. The MANAGER is also responsible for stopping the robot in case of emergency, which may
be detected by the block EMERGENCY using the robot’s sensors, and for sending sensor data to other
blocks of the architecture.

Central to our architecture is the block in Fig. 2 called ANYTIME MOTION PLANNER, which
generates a path (τc) to be followed by the robot. This path will be a function of VECTOR FIELD,
local map (mapk) and robot local localization (x, y, θ), all represented in the same coordinate frame
Lk, valid for the small time interval k. We propose that the local map is built using the latest laser
data only, with no past values, and considering that the robot is approximated by a disk whose radius
is given by its width. So we can say that this map is a memory-free local map. Our experiments will
show the advantages of this map over maps with memory. The SHORT-TIME LOCALIZATION block
generates the robot localization with respect to Lk. Since Lk is a frame that will be only used for a
small amount of time, this block relies on odometry only to compute (x, y, θ)Lk . The path computed
by the planner is used by a PATH CONTROLLER that computes the robot’s required linear and angular
velocities (v, ω), which are sent to the robot through the mission MANAGER. To make it easier to
understand the core behavior of our method, we present next an algorithm with a detailed sequence
of operations executed.

2.1. Algorithm
Algorithm 1 summarizes the strategy proposed in this paper. The inputs of this algorithm are the
desirable time of planning ts and the user command codified as the vector field u(·). Consider that
the time is discretized in small intervals tk, k= 1, 2, . . . , where the period �t= tk − tk−1 corresponds
to the time ts given to the planner to compute a path. Since the planner is anytime, the larger is ts, the
better is the path. On the other hand, we show in the next section that smaller values of ts increase the
safeness of the path in changing environments. Along the execution of the algorithm, a sequence of
local coordinate frames {Lk}, one for each time step tk will be generated (see line 6 of Algorithm 1).

The main loop of the algorithm, whose termination is controlled by the mission MANAGER, first
generates a new coordinate frame {Lk} and transforms the previous computed path and the previ-
ous local map, both obtained with respect to frame {Lk−1}, to the newly created frame {Lk} (lines 7
and 8). Assuming that {Lk−1} and {Lk} are very close in time and space, a homogeneous transforma-
tion matrix Tk−1,k that represents the position and orientation of {Lk−1} with respect to {Lk} can be
computed using the robot’s odometry. Once Tk−1,k is computed, path and local map transformations
in lines 7 and 8 of Algorithm 1 are executed by pre-multiplying each point of the path and of the map
by Tk−1,k, as illustrated in Fig. 3.

After these transformations, whose time of processing may be neglected if compared to ts, a new
instance of the planner is launched (line 11). This planner generates path τs by taking as inputs the
local map recently transformed to {Lk}, the origin of the new path oc, also represented with respect to
{Lk}, the vector field u(p), which represents the human command, and the time of planning ts. With
this information, the resultant path τs follows the vector field and avoids all obstacles represented in
mapk , as will be discussed in Section 2.3.

The reader may be missing a goal position for the planner in line 11. In fact, since a semi-
autonomous robot does not always know its precise destiny, in case the goal is required by the planner
used, it can be chosen arbitrarily and without lost of generality as a position in front of the robot,
at the limit of its field of view. The planner used in the experiments of this paper does not require a
goal position. Because any anytime motion planner can be used in our approach, we choose not to
show a pseudocode of the Planning function in line 11. The pseudo-code of the planner used in our
experiments can be found in ref. [20].

The origin position, oc, is obtained by integrating (simulating) the previous computed path (com-
puted with respect to {Lk−1} and transformed to {Lk}), for a time ts starting at the actual robot position
pr with respect to {Lk} (line 9). For this integration, it is considered the average robot speed vr. By
choosing a position in the previous path as the beginning of the next one, we guarantee continuity
of the path and also prevent the planner to compute consecutive paths in different homotopic classes
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Algorithm 1 Navigation strategy
Data: ts, u(·)

1 k= 0 ; v= 0.0 ; ω= 0.0 ; vr = (v, ω) ; τ0←∅ ;
2 L0 = GetNewFrame();
3 map0 = GetMap(L0);
4 k← k+ 1;
5 while activated do:
6 Lk = GetNewFrame();
7 τc = TransformPath(τk−1,Lk);
8 mapk = TransformMap(mapk−1,Lk);
9 oc = Integrate(τc, pr , ts, vr );

10 while t≤ ts do in parallel:
11 τs = Planning(mapk, oc, u(p), ts);
12 vr = FollowPath(τc);
13 end-parallel
14 τk = ConcatenatePath(τc, τs, pr, oc);
15 mapk = GetMap(Lk);
16 k← k+ 1;
17 end-while

Fig. 3. Illustration of the homogeneous transformation used in Algorithm 1, where �p is a point in the path,
and �pk−1 and �pk are representations of this point, respectively, with respect to Lk−1 and Lk. The homogeneous
transformation matrix that relates these two coordinate frames is Tk−1,k.

(e.g. at tk−1 the path avoids an obstacle from the right and at tk from its left). Notice that this strategy
defines a path between the current robot position pr and oc to be followed by the robot while the new
path is computed. This path is known as committed path.23

While a new planning problem is solved in line 11 of Algorithm 1, a path follower controller
drives the robot along the committed path (line 12). Notice that the committed path is already in
{Lk}, so the controller uses robot positions and orientations with respect to this frame to compute the
robot velocities.

After ts seconds, the part of the committed path that was not followed by the robot is concatenated
with the new path τs (line 14) and a new local map containing the most recent sensor informa-
tion is obtained (line 15). The process then restarts by creating a new coordinate frame {Lk+1} and
representing the new path and new local map with respect to this frame.

It is important to notice that this process only works in practice because a transformation Tk−1,k

between the current and the previous coordinate frame is known. Since ts is usually very small
(less than 2 s), odometry information may be sufficient to compute this transformation with low
uncertainty. We evaluate this affirmation in Section 5.
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Fig. 4. An illustration of the navigation strategy. The robot is represented as a circle and has speed vr. Obstacles
are represented by gray color. The dark gray ellipse is a moving obstacle. Notice that the robot cannot dif-
ferentiate moving and static obstacles. The complete path to be followed by the robot is the dashed blue line.
Radius Rs defines a Static Zone (Zest) and radius Rp represents the planning radius. The Dynamic Zone (Zd)
is externally delimited by Rp and internally by Rs. The Emergency Zone is represented by a circle around the
robot.

2.2. Analysis
An illustration of Algorithm 1 is shown in Fig. 4. In Fig. 4(a), we show a workspace containing
static and moving obstacles and a robot moving with velocity vr. Assuming that the robot already
computed a path τ0 at t= t0, at t1, a coordinate frame {L1} is created and τ0 is transformed to this
frame, which is only valid until t2 = t1 + ts (Fig. 4(b)). While the robot moves using odometry with
respect to {L1}, the planner starts computing a new path, which starts in a point in front of the robot
oc1. For the computation of this path, we assume in this example that the human command was “go
straight.” As will be discussed in Section 2.3, a vector field (not shown in this figure) is then created
to represent this command. This field would enforce the robot to move straight if no obstacles were
present in the workspace.

To analyze the algorithm behavior, we define three regions, as shown in Fig. 4(c): (i) static zone
(Zest); (ii) emergency zone (Ze); and (iii) dynamic zone (Zd). The static zone, which is a disk of
radius Rs centered on the robot position at the beginning of the loop, is a region in which the robot
is following the committed path. Therefore, Rs is directly related to point oc, found by simulating
the robot movements using the previous path. In the case of no moving obstacles in this region, our
method guarantees the absence of collisions if the robot follows the planned path. To try to prevent
collisions with a possible moving obstacle inside this region, we define an emergency zone that
moves along the robot. If an obstacle is detected inside this region, the robot stops by activating its
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emergency system. Notice that this behavior is not sufficient to prevent a collision with a moving
obstacle since this obstacle can be still moving toward the robot. It is expected, however, that some
moving obstacles, such as people and other robots, would also stop or change their paths to avoid the
collision. The dynamic zone is also centered on the robot position at the beginning of the loop and is
delimited internally by Rs and externally by the planning radius Rp. Radius Rp is in fact a parameter
of the planner, which is chosen as a function of computational capacity (larger regions require more
computation), speed and number of obstacles and/or the sensor’s field of view. If the robot keeps its
previous velocity, the proposed algorithm will guarantee that the robot will not enter the dynamic
region in the planning interval ts. Therefore, there will be no collisions with the obstacles in this
region. It is interesting to notice that, even if the robot does not enter the dynamic zone, the planned
path consider obstacles in such a zone. Since this path will be used to define the starting point of the
next one, this is an important characteristic to allow obstacle avoidance.

After ts seconds (see Fig. 4(d)), the robot have followed the part of the path drawn in yellow
but did not reach the expected point oc1. At this time, a new path starting in oc1 is delivered by the
planner. The algorithm thus concatenates the part of the old committed path not followed by the robot
(red path) with the new path (green path), composing a path τk, k= 1 that starts in the current robot
position. Fig. 4(e) shows the new coordinate frame {L2} with respect to which the new complete path
τ1 is transformed using transformation T1,2. A new planner is then launched with start position oc2

computed by simulating the new path.
To better analyze the effect of the planning time ts for the behavior of the proposed algorithm,

notice that, in the extreme case, when the robot moves in a straight path with maximum velocity vmax

the radius of the static region is given by

Rs = vmax · ts . (1)

Thus, if the robot speed and/or the planning time are increased, the static zone is also increased.
Since in this region the robot follows a plan computed ts seconds ago (the committed path), this
plan only consider obstacles that became static during this time. If ts is reduced, the static zone is
also reduced, and thus the planned path would increase the probability of avoiding moving obstacles.
To illustrate this behavior, see Fig. 4(f), which shows a situation where the moving obstacle is inside
the static zone, what may cause the planner-based obstacle avoidance strategy to fail. This happens
because the robot makes no distinction between moving and static obstacles and always follows
the path assuming that it is free of collisions. In Fig. 4(g) and (h), when smaller planning times
were used, the static zone became smaller and we again have obstacle avoidance within this region.
Notice that the same behavior could be achieved if we had reduced the robot speed, what would
certainly compromise the efficiency of the mission. It is very important to mention, however, that
our approach cannot guarantee that no collisions with movable obstacles will happen. As pointed by
ref. [24], collision with moving obstacles would only be guaranteed if the dynamics of both the robot
and the obstacle are considered and the planning horizon is infinite.

We then conclude that the proposed navigation strategy guarantees obstacle avoidance for static
obstacles, assuming that these obstacles are detected by the robot’s sensors. For moving obstacles, the
strategy depends on the planning time and on the speed and acceleration of both robot and obstacles.
Assuming that high robot speeds are desirable and that obstacle speeds cannot be controlled, it is then
necessary to reduce the planning time ts to increase the probability of moving obstacle avoidance.
However, it is important to mention that anytime planners still need a minimum amount of time to
compute its first path. Also, if the planning time is very close the minimum, the quality of the path
could be highly compromised. Thus, the reduction of ts can be done by the development of more
efficient path planning algorithms or by the use of more powerful processors. This will allow the
robot to move fast and still be able to avoid some moving obstacles by following the planned path.
However, as mentioned before, collision avoidance for moving obstacles is not guaranteed by the
methodology, which would only be possible if the future trajectory of the obstacle is known and
considered by our planner.24

2.3. Motion planner
The motion planner considered in this work must be (i) complete: to provide a path if a path exists;
(ii) anytime:23 to provide the best path up a certain interval of time ts; and (iii) able to optimize a cost
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functional based on a vector field that encodes the user command. Therefore, any path planner with
these characteristics could be promptly used in our approach.

For an example of vector field, consider the command “go straight,” which basically means that
the robot must move straight in the direction it is pointing to. To simplify the definition of a vector
field for this command, we define a coordinate frame as follows: the origin of the coordinate frame
is the position of the robot at the moment it receives the command; the x axis points to the front of
the robot at the same moment; and the y axis points to the left of the robot. A planar vector field
u(p)= [ux, uy]T , where p is the robot position, may be then defined as

u(p)=
[

v
−k y

]
, (2)

where, v is the predefined robot’s forward speed and k is a constant that determines how fast the
robot will correct its lateral displacement y. An important characteristic of vector fields such as the
one in Eq. (2) is that they can be computed very efficiently given the robot position with respect to its
coordinate frame. Since we assume that the robot is always very close to the origin of its coordinate
frame, once a new frame is created every ts seconds, p can be computed directly from the robot’s
odometry. Other user commands, such as “turn left” and “turn right” would define different vector
fields. A vector field for these commands could be, for example, one that would make a robot to
follow a circle. Although fast to be computed, the derivation of such a field is more elaborated than
the one in Eq. (2) and is omitted here for the sake of focus. This and other fields can be derived
with the methodology proposed in ref. [25]. It is important to mention that, during the execution of
Algorithm 1, the several vector fields available are switched in function of the user command.

Let a path to be the continuous function τ : [0, 1]→P , where P is the space of robot positions in
frame {Lk}. To find a short path that follows the vector field, we search for a path that minimizes the
following cost functional1:

F[τ, u ] =
∫ 1

0

(
1− τ ′(s)
‖τ ′(s)‖ ·

u (τ (s))

‖u(τ (s))‖
)
‖τ ′(s)‖ ds , (3)

where the upper comma stands for the derivative with respect to the spacial parameterization variable
s of the path τ , operator ‖ · ‖ represents the Euclidean norm and the center dot is the scalar product.
Notice that this functional is a function of both the length of the path and of on how “close” the path
is from the vector field. In fact, F[τ, u] is greater than or equal to zero, and is zero if, and only if,
the path is parallel to the field (τ ′(s)= α u(τ (s)), for α > 0). Using this functional, our local path
planning problem can be written as

minimize
τ

F[τ, u]
subject to: τ(0)= oc ,

‖τ(1)− τ(0)‖ = Rp ,

τ (s) ∈Pfree, ∀s ∈ [0, 1] ,

(4)

where oc is the initial path position, Rp is the radius that defines the disk-shaped planning region and
Pfree is the space of positions where the robot is free of collisions.

The previous optimization problem presents a major difference in relation to the standard motion
planning problem, which is the replacement of the goal position constraint by one constraint that
enforces the distance between the initial and final positions of the path. Therefore, since there
is no definition of a goal position, it is the role of Functional (3) to dictate the direction of the
movement.

In this paper, we chose RRT* to solve the Optimization Problem (4) although, as discussed before,
any anytime motion planner could be applied. By randomly sorting positions (nodes) in the search
space, in our case the intersection between a disk-shaped region of radius Rp and Pfree , RRT*

1This functional is exactly the one proposed in ref. [20] when variables a and b in ref. [20] are set to 1. The functional
is also similar to the upstream cost proposed in ref. [26], which is specific for curves of unit derivative.
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Fig. 5. MARIA, the semi-autonomous service robot used in the experiments of this paper. The main components
of the robot are shown in evidence: a SICK laser range sensor, a notebook, encoders and bumpers.

constructs a tree that starts at oc and has nodes covering the free part of the space. An RRT* tree
is illustrated in Fig. 1. Because we do not specify a goal position, in our method, differently from
previous implementations of RRT*, once the tree is computed, our solution will be a path between
oc and one of the nodes that are approximately at distance Rp from oc. Among all possible paths, we
choose the one with the smallest path cost. A deep discussion about RRT* can be found in ref. [21].
Details of our specific implementation are in refs. [20] and [27].

3. Experimental Setup
We have implemented the proposed methodology in C++ using OMPL28 and ROS.29 It was then
simulated using StageROS and tested in practice with our semi-autonomous service robot MARIA,
shown in Fig. 5. This robot was built over a Pioneer3-AT base equipped with encoders and gyroscope
for odometry, bumpers for collision detection and a SICK-LMS 100 planar laser sensor for obstacle
detection and avoidance. The robot base measures 0.625 m × 0.49 m. During path computation, the
robot shape was approximated by a disk of radius 0.65 m to simplify collision detection.

The application that we explore in our experiments is the one where a robot enters an unknown
building composed of straight corridors that intersect each other in right angles. The corridors may
contain static obstacles and people. We assume that the user may give five different commands to
the robot: “go straight,” “turn right,” “turn left,” “return” and “stop.” The first three commands may
have a parameter in meters that indicates how much the robot must move. For example, “turn right 3”
means that the robot must turn right in the first corridor found at the right and move 3 m in that
corridor. In our experiments, to avoid command misinterpretation, thus guaranteeing experimental
reproductibility, the commands are given to the robot using a sequential list, where a command is
executed after the previous one is completed.

Our experiments were conducted in a building with 2.35 m wide corridors with doors, that could
be open or closed, and some pillars close to the walls. We artificially added some obstacles to the
environment to test our approach. To detect corridors, intersections and obstacles, our software uses
laser data only. In these data, the longest straight lines, even with small gaps, are assumed to be the
corridor walls. Larger gaps on these lines are assumed to be corridor intersections. Every other laser
data not classified as corridor walls are assumed to be an obstacle. We do not differentiate or classify
the obstacles.
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3.1. Coordinate frames definition
Our method does not specify how the short-time local coordinates are defined. In our experimental
setup, we chose to define these frames such that the origin is the center of the corridor (determined
with the help of the laser sensor), x is tangent to the corridor pointing in the forward direction and y
is orthogonal to it, pointing toward the left wall. Notice that this definition of the coordinate frame
relies on the detection of the corridor, what is done by detecting the longest lines in the laser sensor
data. This definition will facilitate the vector field computation, as shown next.

3.2. Artificial vector field design
The idea of this paper is to encode user commands as artificial vector fields. In our experimental
setup, an important command is “go straight,” which basically means that the robot must follow the
corridor in the direction it is pointing to. Assuming that the coordinate frame is defined as explained
in the previous subsection, u(p) is defined as

u(p)=
[

1
k(d0 − d)

]
, (5)

where k is a constant scalar that determines how fast the robot will move toward d0, which specifies
the desirable distance from the right wall and d is the robot’s current distance to this wall. Here we
assume that d0 is fixed and specified based on cultural and social conventions. It is also important to
mention that only the direction of u(p) will be used by our motion planner, once it is normalized in
the optimization functional (3).

The other commands can be executed with the same vector field. For example, the command turn
right may be implemented by a simple angle controller that manipulates the robot angular velocity ω.
After the robot turns 90◦ to the right in the next intersection found, it then follows the corridor using
the previous vector field. When this command has a parameter, after the robot turns 90◦, the vector
field is used to make the robot to follow the corridor for the specified distance.

3.3. Path following
To follow the computed path, a controller is necessary. In our implementation, the path is
parametrized by a sequence of waypoints. To follow the path, the robot must move from one way-
point to the next in the sequence. To do that, we use a controller that minimizes the error vector
e= [ex, ey]T from the current robot position to the closest waypoint in the path. Since the robot
has a differential drive base and also has a low-level velocity controller with linear and angular
velocities as inputs (v and ω, respectively), in this paper we use a simple static feedback linearization
technique30 to minimize e. Once ‖e‖ is smaller than a given radius γ , the robot moves toward the
next waypoint, by computing e in function of this new waypoint.

3.4. Path planning and time of planning
As mentioned in Section 2.3, our implementation uses RRT∗ with cost functional (3). To validate and
justify the use of this planner and also choose the ideal time of planning ts, before experiments with a
service robot, we executed a numerical evaluation of this and other planners. We performed 100 runs,
in the same conditions, with three planners: VF-RRT,26 RRT∗ with Euclidean cost function and RRT∗
with functional (3). VF-RRT is a modification of RRT that implicitly optimize the functional (3).
It is not an anytime planner, stopping the search as soon it finds a path that solves the problem.

Table I shows numerical comparative results obtained in a simulated corridor with 50 circu-
lar obstacles generated randomly and the vector field in Eq. (5). In those experiments, we set our
parameters as searching region radius Rp = 5 m; field gain k= 0.5; and desired distance to the wall
d0 = 0.7 m. For each planner and for four different planning times, we computed (i) the Euclidean
cost of the path; (ii) the upstream cost of the path given by functional (3); and (iii) the smoothness of
the path, computed by OMPL as

smoothness=
n−1∑
i=2

(
2(π − arccos(a2

i + b2
i + c2

i ))

ai + bi

)2

, (6)



Navigation of semi-autonomous service robots 11

Table I. Comparison between planners for an environment with 50 obstacles.

RRT∗ RRT∗
Planning time VF-RRT (Euclidean) (upstream)

Euclidean cost 6.85 5.54 5.62
Upstream cost (×10−3) 1497.58 319.23 252.24

ts = 0.45 s

Smoothness 320,356.45 163.92 299.68

Euclidean cost 6.86 5.52 5.59
Upstream cost (×10−3) 1506.85 269.95 213.5

ts = 1 s

Smoothness 295,188.52 150.6 238.33

Euclidean cost 6.83 5.5 5.57
Upstream cost (×10−3) 1478.72 240.83 190.31

ts = 2 s

Smoothness 303,344.8 130.66 174.84

Euclidean cost 6.85 5.49 5.56
Upstream cost (×10−3) 1501.86 214.64 172.35

ts = 5 s

Smoothness 308,461.22 128.77 173.24

Fig. 6. Overall behavior of the navigation strategy simulated in StageRos. The path performed by the robot is
represented by red line, its initial position is marked by a black circle and the targets by black “x”s. The green
cubes represent statics obstacles in the environment.

where ai = dist(si−2, si−1), bi = dist(si−1, si), ci = dist(si−2, si), si is the ith element of the path
and dist(si, sj) is the Euclidean distance between two elements of the path.

Bold numbers in Table I indicate the best results found for each ts. For times smaller than
ts = 0.45 s, both instances of RRT∗ failed a few times to return a solution when we used a Intel
Core I7@2.4 GHz,8 GB RAM computer. Notice in the last column of the table that as larger is the
planning time, the smoother and closer to the vector field is the path. Also, observe that RRT∗ with
Euclidean cost function generates the smoothest paths but, as expected, does not follows the vector
field (see the upstream cost). VF-RRT, which does not explicitly optimize any functional, presents
the worst overall results.

4. Simulated Results
In our first set of experiments, we used the StageRos simulator. The workspace simulated in
StageROS, shown in Fig. 6, is very close to the actual building floor used in the real-world exper-
iments. In all simulations, the parameters of the method were set to be searching region radius
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Rp = 5 m; field gain k= 0.5; desired distance to the wall d0 = 0.7 m; and time of the committed
path ts = 1.0 s.

To evaluate the overall performance of the navigation strategy, the user defined two targets and
the following sequence of commands to achieve them: (1) “go straight”; (2) “turn right”; (3) “go
straight”; (4) “turn right”; (5) “go straight”; (6) “stop”; (7) “return”; (8) “turn left”; and (9) “turn left
5 (meters)”. Figure 6 shows the path performed by the robot (red line) from the initial position (black
circle) to the targets (black x). Notice that the robot was not aware of the targets’ localization and
was only following the human user commands. At each intersection of corridors, a new command is
launched and performed by the robot. Notice that the robot successfully reaches the targets (even not
knowing its own or the targets global position), avoiding the static obstacles present in the environ-
ment (green cubes) and remaining close to the right wall, as defined by the artificial vector field in
Eq. (5). A video showing this simulation can be found at https://youtu.be/kl01d0wOE3s.

Additionally, to show that the proposed approach can deal with wider and more cluttered environ-
ments, we performed a simulation in a workspace composed of 7.5-m wide corridors populated by
20 obstacles of approximately the size of the robot, including two moving obstacles. In this simula-
tion, the robot received three commands: (1) “go straight”, (2) “turn right” and (3) “go straight.” A
video of this simulation can been seen at: https://youtu.be/zK95sSOQ7QE.

4.1. Comparison with potential function
To compare the proposed method with a reactive approach, we chose to implement the traditional
method based on potential functions described in ref. [31]. In this method, the robot’s velocity is
determined by the sum of the gradient of an attractive potential function induced by the target and
the gradient of repulsive potential functions induced by the obstacles. In our case, the normalized
version of the vector field in Eq. (5) is used as the attractive field. The gradient of the repulsive
potential function is obtained through the sum of the contribution of the ith obstacle detected by the
laser as

∇Ui(di)=
⎧⎨
⎩

kr

(
1

Q∗
− 1

di

)
, di ≤Q∗

0, di > Q∗
, (7)

where di is the distance between the robot and obstacle i, Q∗ is the radius of influence of the obstacle
and kr is a positive gain.

We have simulated the navigation of the robot in a corridor with obstacles 10 times, obtaining the
paths executed by the robot using both, the strategy proposed in this work and potential functions.
In the two situations, the robot was executing command “go straight.” Figure 7 shows a comparison
of two typical paths. Table II shows the results of the average values for (i) Euclidean cost; (ii)
upstream cost; and (iii) smoothness.

It can observed by Table II that the distance traversed by the robot using the two strategies is
statistically the same, if it is considered a T-test with significance level of 5%. However, we can
notice that the upstream cost is much smaller for the proposed strategy, meaning that the robot more
precisely followed the user command encoded by the vector field. Also, the proposed approach gen-
erated much smoother paths. This behavior can be also visualized in this comparison video: https://
youtu.be/JyNZmqzTzp0. Smoothness would be an essential metric if the robot is carrying a fragile
object or even a person, as is the case of wheelchairs.

We then conclude that a reactive strategy using potential functions is easy to implement but present
poorer results. In addition, depending on the relative position of the obstacles, the reactive strategy
can lead the robot to a local minimum, where the sum of each contributions ∇Ui and the attractive
field is zero, stopping the robot indefinitely. This will never happen with the proposed approach if a
free path exists within the robot’s field of view. The reason for this is the use of complete planners in
our algorithm.

4.2. Comparison with SLAM
In this section we evaluate our methodology with two kinds of maps: a memory-free local map
generated directly with the newest laser scan, as proposed in our methodology (Section 2), and a
global map obtained using Simultaneous localization and mapping (SLAM). We used the SLAM

https://youtu.be/kl01d0wOE3s
https://youtu.be/zK95sSOQ7QE
https://youtu.be/JyNZmqzTzp0
https://youtu.be/JyNZmqzTzp0
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Table II. Comparison between potential function and our strategy. The p-value was computed using the
T-Test applied to each criteria.

Potential function Our strategy p-value

Euclidean cost 20.97 21.05 0.62
Upstream cost 1.97 0.31 1.82e-09
Smoothness 362,868.13 17.71 6.92e-03

Fig. 7. Comparison between (a) the proposed methodology and (b) a reactive approach based on potential
functions. In red is the simulated robot path.

implementation given by hector_slam, which was configured with the parameters suggested by the
authors.32 This package generates an occupancy grid which we binarized such that cells with an
occupancy probability smaller or equal to 0.5 were considered free space.

To compare the two mapping versions, we also used a corridor where the robot is executing the
“go straight” command. Once the robot starts its movement, two rectangular obstacles representing
the legs of a person also start moving toward the robot. A sequence of snapshots of a simulation using
SLAM is shown in Fig. 8. A complete simulation can be seen at https://youtu.be/pWG7zFOviDI.

Notice that SLAM causes a delay in the update of the actual position of the moving obstacles. This
happens because the mapping algorithm needs a sequence of measurements to define the occupancy
probability of a cell. Thus, even when the obstacle is very close to the robot, the global map indicates
it is about 2 m way, as shown in Fig. 8(d). This erroneous information may lead to a collision, as
shown in Fig. 8(e).

This experiment was repeated 40 times for the memory-free local map and 40 times for the global
map generated using SLAM. For each method, the obstacle velocity was set to assume four different
speeds. Thus, for each speed, 10 experiments were executed. For all simulations, the robot velocity
was set to be 0.9 m/s, which is the maximum speed of our robot MARIA. Table III shows the rate
of success that is the percentage of trials without collisions, for each situation. Observe that the
memory-free local map increases the probability of moving obstacle avoidance. Besides, another
advantage of the memory-free map is the lower memory requirement, once the global map created
using SLAM grows as the robot moves around the workspace. On the other hand, SLAM creates a

https://youtu.be/pWG7zFOviDI
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Table III. Comparison of the rate of success of the methodology using our approach (memory-free local map)
and SLAM. The planning time was 1.0 s, the robot speed was 0.9 m/s and the obstacle speed was vob.

vob (m/s)

Mapping 0.10 0.25 0.40 0.50

SLAM (%) 100 60 20 0
Memory-free local map (%) 100 100 90 70

Fig. 8. Moving obstacle avoidance using a global map obtained using SLAM. Each snapshot shows a stage
simulation and the global occupancy grid created by hector_slam package. The robot speed was configured to
be 0.9 m/s, the obstacle velocity 0.5 m/s and the planning time 1.0 s.
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Fig. 9. Robot’s odometry obtained during the execution of three laps in a closed-loop environment, composed
of four corridors identified by A, B, C and D. The complete path measured approximately 300 m. We have
added traffic cones to corridor B to complicate the passage of the robot. The robot started at the green point
(corridor A) and stopped at the red dot.

very detailed global map, what facilitates wall detection. In a global map, a sequence of short-time
coordinate frames is not required any more, although this strategy would make the system more
robust to localization errors, as we show in next section.

5. Actual Robot Experiments
In this section, we show a series of experiments performed with MARIA, described in Section 3. We
used the same code and parameters of the simulations.

Our first experiment evaluates the robustness of the proposed approach to odometry uncertainties.
We have performed an experiment where the robot was commanded to circulate a given closed circuit
inside the building. The user defined a simple sequence of two commands: “go straight” and “turn
right,” which was repeated 11 times, forcing the robot to complete three complete turns. The robot
velocity was set to its maximum: 0.9 m/s. Besides the natural obstacles of the building, such as pillars
and decorative pots, we have introduced some traffic cones to the robot path. No people were present
during this experiment.

The odometry of the robot during the experiment is shown in Fig. 9. Snapshots of the experiment
are shown in Fig. 10 and a complete video is at https://youtu.be/loS_TxmtQMI. After the experi-
ment, we observed that the robot finished its mission very close to the starting point, what cannot be
observed by the robot odometry, which presents a fairly large integration error. This error did not pre-
vented the robot to complete its mission, since the methodology uses short-time coordinate frames.
In this experiment, each coordinate frame was valid for only 1.0 s, during which the odometry
presents very good results.

To show how the system behaves in the presence of moving obstacles, we run an experiment
where a person moved against the robot while it was following a “go straight” command. Again, the
robot was moving at vmax = 0.9 m/s but now with a planning time ts = 0.45 s. Time reduction was
necessary to allow the avoidance of a person moving at approximately 1.0 m/s. At this point, it is
important to mention that, since we used an anytime motion planner, a reduction of the planning
time may generate worse, but still complete paths.

This experiment was repeated 10 times and the robot was able to avoid the person in all trials.
Figure 11 presents snapshots of the experiment. A complete video can be seen at https://youtu.be/
DONxBJJ5OT8. Notice in Fig. 11(a) that a person starts its movement but because it is still outside
the robot’s planning radius (not shown in the figure), the planner ignores its presence. In Fig. 11(b)
and (c), the person enters the robot’s planning radius, causing the planning to change the path.
Notice in Fig. 11(d) that the planned path considers the avoidance of an obstacle that was behind

https://youtu.be/loS_TxmtQMI
https://youtu.be/DONxBJJ5OT8
https://youtu.be/DONxBJJ5OT8
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Fig. 10. Snapshots of the experiments in Fig. 9. (a) Robot in corridor A; (b) robot in corridor B avoiding artificial
obstacles; (c) robot in corridor C; and (d) robot in corridor D.

the actual obstacles detected by the laser. This happens because this path was generated with infor-
mation obtained 0.45 s before. In this way, obstacle avoidance is only possible because the robot
has started the avoidance some time before. It is then clear that, if the person had changed its direc-
tion or had increased its speed after path computation, avoidance would not be possible. This would
happen because the person would be moving inside the robot’s static zone, where it is assumed
that all obstacles are static. However, except for sudden jumps and other very unique movements,
we believe that the situation of this experiment, where person and robot are moving fast toward
each other, is among the worst case scenarios that may happen in a real-world situation. Although
we cannot guarantee obstacle avoidance without stopping the robot in these cases, we believe that
the proposed methodology will perform well in the majority of cases. Remember that a collision
caused by the robot will never happen, once it will stop when the person enters its emergency
zone.
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Fig. 11. Moving obstacle avoidance. At the right-hand side are snapshots of the experiment where a person
moves toward the robot. At left are Rviz images showing the robot as a red dot, the planned path as a green line,
laser data as black dots and the robot’s static zone in blue.

6. Conclusions
This paper presented an architecture for safe navigation of semi-autonomous service robots that
is based on motion planners and does not require global localization. The proposed architecture
assumes that a human user is the part of the robot’s control loop, although in this work we did
not have the objective of studying the several aspects of human–robot interaction, which have been
extensively covered by several other works.33

The proposed strategy is especially useful for robots that must follow user commands through
safe and smooth paths, but do not have a global map of the environment or a global localization
system. The basic idea of the strategy is to keep a local coordinate frame only by the time needed
by the robot to follow part of the last computed path and, at the same time, to compute a new path
that considers possible changes in the workspace. After the new path is computed, a new coordinate
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frame is defined and the path is transformed to the new coordinates. The principle of the strategy
is that two coordinate frames are very close to each other and, therefore, it is possible to define a
coordinate transformation between them using odometry only.

Since our method was designed to be used with semi-autonomous robots, we proposed the codifi-
cation of user commands as simple vector fields. This allowed the use of previous methodologies that
integrates optimal planners and vector fields as the planner used in our method. With these strategies,
specially,20 which was used in the experiments of this paper, the robot is able to follow the vector
field as close as possible and also to avoid unknown obstacles.

The experimental comparison between our strategy and a reactive approach shows that the former,
which is based on optimal planners, generates smoother and faster robot paths. Also, because the
planners are also complete or probabilistically complete, the proposed methodology is immune to
local minima, which usually cause the robot to stop when reactive approaches are used. On the other
hand, when our strategy, which does not require global localization, was compared to a SLAM-based
alternative, we show that it can present comparable results in terms of the quality of the path, in
spite of its simplicity and smaller computational cost. Additionally, our memory-free strategy has
presented better results in the presence of moving obstacles.

By analyzing the proposed algorithm, we observe that a robot running our strategy is able to avoid
static obstacles and, depending on the relationship among obstacle speed, robot speed and planning
time, we can also avoid moving obstacles, including people, as shown in our experiments. Therefore,
future works may include increasing the efficiency of the planners, what can be done, for example,
by implementing some of its functions in GPU or other dedicated hardware. The prediction of the
obstacle motion is something that could also improve the approach.

Another extension of the work would be the inclusion of differential and/or dynamic constraints
in the optimization problem. This would allow the methodology to be applied to faster robots. Also,
this modification would potentially make the ride of intelligent wheelchairs users more comfortable,
since we would be able to limit the chair accelerations and jerks.
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