
Optimization-Based Motion Planning for Vector Field Following in
Dynamic Environments

David Akhihiero, Uthman Olawoye, and Guilherme A. S. Pereira

Abstract— This paper proposes a method for integrating
trajectory optimization with vector field-based motion planning
methods. This approach aims to address motion planning
challenges, particularly in scenarios like UAV navigation, where
vector fields are efficient but struggle with dynamic obstacles
and motion constraints. Such challenges also include scenarios
where there is no defined goal configuration such as border
following, loitering, and curve circulation. Several vector field
methods have been proposed to solve these problems but they
are prone to failure when encountering previously unmodeled
or dynamic obstacles as well as no-fly zones. The method
proposed in this paper uses a vector field for high-level planning.
The vector field is used to create paths for the vehicle, which
are optimized for smoothness, obstacle avoidance, and vector
field adherence before they are followed. The result is a smooth
path that is fast to plan and easy to follow for a motion-
constrained vehicle. A series of simulations was used to validate
this methodology, which is compared with a previous method
that uses RRT*.

I. INTRODUCTION

Vector field techniques are popular in robot motion plan-
ning because they are intuitive, simple, and have low com-
putational cost. As closed-loop methods, they are robust to
small localization and actuation errors, making them popular
for tasks like UAV/UGV patrolling, inspections, and moni-
toring. In these methods, a velocity or acceleration vector
drives the robot through collision-free trajectories from any
start configuration towards some goal or along some path.
Several vector field methodologies have been proposed. In
the first method proposed by Khatib [1], the vector field
was the negative gradient of an artificial potential field
where the potential field has its minimum value at the goal
configuration. This method had limitations, like sometimes
converging to a local minima, and motion oscillation when
the robot moves at high speeds among close obstacles. To
address some of these issues, other potential field variants
like the generalized potential fields method [2] and harmonic
functions [3] were proposed. Some vector field methods that
are not based on gradients of functions have been developed
to solve planning tasks like tracking [4] and curve circulation
[5], [6].

However, vector field techniques face some challenges:
(i) although originally designed for dynamic environments,
vector fields often lose global convergence properties when
encountering dynamic or previously unknown obstacles; and

David Akhihiero, Uthman Olawoye, and Guilherme A. S. Pereira are
with the Department of Mechanical, Materials and Aerospace Engineering,
Benjamin M. Statler College of Engineering and Mineral Resources,
West Virginia University. Morgantown, WV, 26501, USA. Emails:
daa00017@mix.wvu.edu, uoo00001@mix.wvu.edu,
guilherme.pereira@mail.wvu.edu

Fig. 1. Illustration of the proposed optimization-based method for UAV
motion planning. The vector field (blue arrows) guides the UAV but does
not account for dynamic or previously unknown obstacles. Therefore, the
initial waypoint parametrized trajectory (red), obtained as the integration of
the field, collides with an obstacle (black square). The proposed method
optimizes the trajectory so it avoids the obstacle, is smooth, and adheres to
the vector field (green).

(ii) they do not consider the vehicle’s motion constraints,
limiting their applicability in real-world scenarios. In a recent
paper, the authors of [7] address the obstacle avoidance
problem by modifying a curve-circulation vector field as
soon as a new obstacle is detected. The methodology is
very elegant but can only be applied to very specific vector
fields. The framework proposed by Pereira et al. [8] is more
generic and works by integrating vector fields with the op-
timal version of the Rapidly-Exploring Random Tree (RRT)
algorithm, RRT* [9]. While this approach is adaptive for
dynamic environments, this framework has some limitations:
sample rejection during path generation leads to wasted
computational effort, and the straight-line paths produced
by RRT* do not consider the vehicle motion constraints
(although this could be addressed by using Dubins paths as
local planners, as proposed by the authors in [10]). These
drawbacks show the need for a more efficient, adaptive,
and motion-constrained planning framework that retains the
advantages of vector field techniques while addressing their
shortcomings. The methodology proposed in this paper can
address the shortcomings of the framework proposed in [8].

Therefore, the contribution of this paper is the extension
of the framework proposed by Pereira et al. [8] by replacing
RRT* with an optimization-based planner inspired by the
Covariant Hamiltonian Optimization for Motion Planning
(CHOMP) [11]. CHOMP has been modified and applied
before to multiple motion planning problems like manipu-
lation [12] and UAV trajectory planning [13]. A work by
Bonatti et. al [14] used a CHOMP-based planning algorithm
to optimize the trajectories of a cinematography drone for
smoothness, obstacle avoidance, shot quality, and occlusion

2025 International Conference on
Unmanned Aircraft Systems (ICUAS)
May 14-17, 2025. North Carolina, USA

979-8-3315-1328-3/25/$31.00 ©2025 IEEE 602

avoidance.
Unlike RRT*, our CHOMP-inspired method uses gradient-

based optimization to generate smooth trajectories while
considering constraints such as obstacle avoidance and the
vector field that guides the path. It avoids the inefficiencies
of sampling-based methods and provides a computationally
efficient solution for real-time applications. This method
is illustrated in Fig. 1, where a UAV navigates an area
guided by a vector field that pulls it towards a super-ellipse
curve at a fixed height. We assume that the vector field
ignores the obstacles when planning an initial trajectory.
This trajectory is then optimized for smoothness and ob-
stacle avoidance resulting in a trajectory that is close to
the original trajectory but avoids obstacles. By optimizing a
functional that balances smoothness and obstacle avoidance,
the optimizer iteratively enhances the quality of an initial tra-
jectory using functional gradient techniques. This algorithm
is based on two main ideas: (i) gradients are available and
can be cheaply computed and (ii) trajectory optimization is
invariant to parametrization [11]. The first idea is formalized
with three objective functionals (a) a smoothness functional,
Fsmooth[ξ], reflecting the trajectory dynamics, (b) an ob-
stacle functional, Fobs[ξ,D], which represents the obstacle
avoidance requirement, and (c) a vector field functional,
Fvf [ξ, u] which aligns the trajectory with the guidance of a
predefined vector field. The smoothness functional is defined
in terms of a metric in the trajectory space enabling it
to include higher-order derivatives. The obstacle cost is
framed in terms of distance fields and using Euclidean
distance transforms, the obstacle functional gradients can
be efficiently computed. The smoothness functional controls
the timing along the path while the obstacle functional
controls the shape of the path. Additionally, the vector field
functional guides the trajectory alignment with the desired
path specified by the vector field, ensuring that the robot
adheres to high-level motion directives while maintaining
feasibility. For vector field design, we acknowledge the
importance of singularity-free constructions as discussed in
[15], which is especially relevant for more complex patrol
shapes like lemniscates.

The next section formally defines the problem solved
in this paper. Our methodology is explained in Section
III. MATLAB simulations are presented in Section IV, and
conclusions and future work are stated in Section V.

II. PROBLEM DEFINITION

Let Q ⊂ Rn represent the configuration space of a
robot, where each point in Q corresponds to a unique
configuration of the robot. The configuration space is divided
into valid and invalid subsets: the valid set of configurations
Qfree ⊂ Q, where the robot can safely navigate, and the
invalid set Qobs ⊂ Q, which represents obstacles or no-
fly zones. The invalid set Qobs can be further partitioned
as Qobs = Qs

obs ∪ Qd
obs, where Qs

obs represents previously
known obstacles or no-fly zones, and Qd

obs denotes dynamic
or previously unknown obstacles or no-fly zones that may
be encountered during the robot’s motion.

Let u : Q \ Qs
obs → Rn be a continuous vector field

that specifies the desired motion of the robot. This vector
field is generated by a global planner without knowledge of
Qd

obs. Let ξ : [0, 1] → Q be a continuous path representing
the robot’s initial trajectory pre-computed as the integral
curve of the vector field, with ξ(0) = q0 ∈ Qfree as the
initial configuration and ξ(1) = q1 ∈ Qfree as the final
configuration.

Because the vector field is constructed without the knowl-
edge of Qd

obs, trajectory ξ may be unsafe for the vehicle. So,
our problem is to optimize ξ for smoothness and obstacle
avoidance, including both known obstacles in Qs

obs and
previously unknown obstacles in Qd

obs that are detected or
communicated to the vehicle during the flight. To guarantee
that the task of the robot is achieved, ξ must also follow
the vector field as closely as possible. They then propose a
motion planning problem that locally changes the original
trajectory as:

Problem 1: Given an initial trajectory ξ computed as the
integral of vector field u with ξ(0) = q0 ∈ Qfree and ξ(1) =
q1 ∈ Qfree, where q0 is at the center of a ball of radius R
and q1 is at the border of the ball, optimize ξ keeping q0

fixed such that ξ is smooth, collision-free and followed the
vector field u as close as possible.

This problem can be mathematically expressed as:

minimize U [ξ] = λ1Fsmooth[ξ] + λ2Fobs[ξ,D]+
+ λ3Fvf [ξ, u]

subject to : ξ(0) = q0,

ξ(s) ∈ Qfree, ∀s ∈ [0, 1]

(1)

where:
• Fsmooth[ξ] represents the smoothness functional,
• Fobs[ξ,D] represents the obstacle functional,
• Fvf [ξ, u] represents the vector field functional, and
• λ1, λ2, and λ3 are scalars that represent the weight of

each term in the functional.
Constraint ξ(0) = q0 ensures that the trajectory starts at
the initial configuration and ξ(s) ∈ Qfree ensures that the
trajectory remains within the valid configuration space Qfree
at all times. Notice that there is no constraints for the final
configuration, expect that it must be in the free space.

The previous local motion planning problem is solved
during the motion of the vehicle in intervals that depend
mainly on its sensors’ field of view and its speed. The basic
idea is that the vehicle (i) optimizes the path inside the
planning horizon (ball of radius R in our case) by solving
Problem 1, (ii) follows the path for some time, (iii) creates a
new planning cube with new obstacles information obtained
by the sensors, (iv) repeat the process starting in (i).

III. METHODOLOGY

In this work, an optimizer based on CHOMP is used
to solve Problem 1. CHOMP is a trajectory optimization
method that can solve simple planning problems and is based
on Elastic Bands proposed by Quinlan and Khatib [16].
It is not a complete planner (in the sense it may fail to

603

find a trajectory free of collisions, even if one exists) but
it is excellent for local planning [17] which means that it
is well suited for repairing a locally generated vector field
trajectory that intersects obstacles, which is the scope of this
paper. The application of optimization to address the problem
stated in the previous section will be shown in the ensuing
subsections.

A. Optimizer

The algorithm optimizes an objective functional that takes
into account the proximity to obstacles, the smoothness of
the trajectory, and adherence to a vector field. It works using
steepest descent optimization directly on the trajectories and
uses reparameterization to maintain consistency independent
of trajectory parameterization. It uses a discretized waypoint
representation for computational efficiency while maintain-
ing theoretical behavior. An important aspect is the use of
workspace gradient information, which allows the robot to
be placed in collision-free configurations even if the original
trajectory is not feasible. This eliminates the need for a
separate planner to first find a feasible trajectory, as is
common with traditional approaches [18].

In this work, there is no predefined global goal configura-
tion. The robot starts from an initial configuration, uses the
vector field to plan a preliminary trajectory from the initial
to an intermediate goal configuration some distance R from
the start, and optimizes that trajectory for obstacle avoidance,
smoothness, and vector field adherence. It then generates a
new preliminary trajectory starting from the last intermediate
goal configuration to a new goal and repeats the trajectory
optimization. This continues until some stopping condition
is met. The algorithm for this methodology is shown in
Algorithm 1 which is explained below.

Algorithm 1 Iterative Trajectory Optimization
1: Initialize q0
2: while not stopping condition do
3: trajopt old ← GETVECTORFIELDPATH(q0, R)
4: [D,∇D]← SIGNEDDISTANCEFIELD(M)
5: for j = 1 to m do
6: trajopt ← OPTIMIZETRAJ(trajopt old, D,∇D)
7: trajopt ← RESAMPLETRAJECTORY(trajopt)
8: trajopt old ← trajopt
9: if ∥∆traj∥ < thresh then

10: break
11: end if
12: end for
13: q0 ← final configuration of the optimized trajectory
14: if stopping condition then
15: break
16: end if
17: end while

In line 1, the initial configuration, q0 is set. Then, as
long as the stopping condition is not met, the robot plans
trajectories to a goal configuration distance R from the
initial. In line 3, a discretized preliminary trajectory is

computed through the integration of the vector field. In line
4, using a discrete map M of the environment, centered at q0
and of width and height 2R, a signed distance field D and its
gradient ∇D are computed. In lines 5 to 12, the preliminary
trajectory is iteratively optimized. After each optimization
iteration (line 6), the optimized trajectory is resampled (line
7) to ensure that the spacing between waypoints in the
parametrized trajectory remains relatively constant. The al-
gorithm for this resampling is detailed in Algorithm 2. Lines
9-11 terminate the iteration when the optimization converges.
After optimization, the initial configuration is reset to the
final configuration of the previous optimized trajectory (line
13).

Algorithm 2 Resample Trajectory
1: Input: Optimized trajectory traj, avg spacing
2: Output: Resampled trajectory traj
3: distances←

√∑
(diff(traj, 1, 2)2)

4: arc len← [0, cumsum(distances)]
5: total len← arc length(end)
6: des num pts← ⌈ total len

avg spacing ⌉
7: new len← linspace(0, total len, des num pts)
8: for j = 1 to size(trajopt) do
9: traj(j)← interp1(arc len, traj(j), new len)

10: end for

The OPTIMIZETRAJ() function optimizes an existing
trajectory for smoothness, obstacle avoidance, and vector
field adherence. The optimization involves the minimiza-
tion of the functional U [ξ] defined in Equation 1 which
is composed of three functionals; a smoothness functional,
Fsmooth[ξ], an obstacle avoidance functional, Fobs[ξ,D] and
a vector field functional, Fvf [ξ, u] which are described in
the subsequent subsections. Once functional Fsmooth[ξ] is
defined, its gradient ∇U [ξi] is computed as:

∇U [ξ] = λ1∇Fsmooth[ξ] +λ2∇Fobs[ξ,D] +λ3∇Fvf [ξ, u] ,
(2)

and the trajectory is updated as:

ξi+1 = ξi − η∇U [ξi] , (3)

where η is the step size. Each functional and their gradients
are explained in the following subsections.

B. Smoothness Functional

The smoothness functional Fsmooth measures the integral
over squared velocity norms as proposed in [11]. It is of the
form:

Fsmooth[ξ] =
1

2

∫ 1

0

∥∥∥∥ d

dt
ξ(t)

∥∥∥∥2 dt . (4)

d

dt
ξi ≈

qi+1 − qi
∆t

(5)

For a waypoint parametrized trajectory it can be approxi-
mated as:

Fsmooth[ξ] =
1

2

n+1∑
i=1

∥∥∥∥qi+1 − qi
∆t

∥∥∥∥2 . (6)

604

In this way, for waypoint i, the gradient of this functional
can be computed as:

∇Fsmooth[qi] =
1

∆t2
[(qi+1 − qi) + (qi − qi−1)] . (7)

C. Obstacle Avoidance Funtional

The obstacle avoidance functional Fobs enforces collision-
free trajectories [11] and is of the form:

Fobs[ξ,D] =
∫ 1

0

c(ξ(t))

∥∥∥∥ d

dt
ξ(t)

∥∥∥∥ dt , (8)

For a discretized trajectory, it is

Fobs[ξ,D] =
n+1∑
i=1

c(qi)

∥∥∥∥ d

dt
ξi

∥∥∥∥ , (9)

where c is a cost function that penalizes closeness to
obstacles given by:

c(qi) =

−D(qi) + 1

2ϵ if D(qi) < 0
1
2ϵ (D(qi)− ϵ)

2 if 0 < D(qi) ≤ ϵ

0 otherwise ,
(10)

where
• D is the signed distance field function, and
• ϵ is the minimum distance from obstacles.
The gradient of the cost function is given by:

∇c(qi) =

−∇D(qi) if D(qi) < 0
1
ϵ (D(qi)− ϵ)∇D(qi) if 0 < D(qi) ≤ ϵ

0 otherwise .
(11)

For waypoint i, the gradient of this functional can be
approximated as:

∇Fobs[ξ] = ∥q′i∥((I − q̂i′q̂i′
T
)∇c− cκ) , (12)

where:
• q′i is the first derivative of qi computed numerically,
• ∥q′i∥ is the norm of the vector q′i computed numerically,
• q̂i

′ is the unit vector in the direction of q′i, defined as
q̂i

′ =
q′i

∥q′i∥
, and

• κ is the trajectory curvature given by:

κ =
1

∥q′i∥2
(
I − q̂i

′q̂i
′T
)
q′′i . (13)

where q′′i is the second derivative of qi computed
numerically.

D. Signed Distance Field (SDF)

As presented in [11], assuming that every obstacle is a
closed object with a finite volume, the value of the signed
distance field D(q) is negative if the point q is inside an
obstacle, positive if q is outside of all obstacles, and zero if
the point is on the edge of an obstacle. The signed distance
field can be computed using a discrete Euclidean distance
transform (EDT) algorithm starting with a boolean discrete
obstacle grid where 1 represents obstacles and 0 is free
space. The EDT can be calculated for both the obstacle grid

Obstacle Field Obstacle Field Complement

Distance Field d(x) Distance Field Complement d'(x)

Signed Distance Field D(x) = d(x) - d'(x)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Fig. 2. Signed Distance Field (SDF) construction. The SDF is created as the
difference between two distance transforms: one over a binary grid where
obstacles are set to 1, and the other over its complement where obstacles
are set to 0, so that D(x) = d(x)−d′(x). Brighter colors represent higher
values.

and its complement, and the Signed Distance Field (SDF) is
derived as the difference between these two distance fields.
An example of SDF construction for a 2D environment is
shown in Fig. 2

E. Vector Field Functional

The vector field functional Fvf is one of the main con-
tributions of this paper. It represents the alignment of the
trajectory with a given vector field so that, by minimizing
the functional, the deviation of the trajectory from the desired
vector field is reduced, ensuring that the motion respects
predefined directional influences throughout its path. In this
paper, the functional is defined as:

Fvf[ξ, u] ==

∫ 1

0

(
1−

d
dtξ(t) · u(ξ(t))∥∥ d
dtξ(t)

∥∥ ∥u(ξ(t))∥
)
dt , (14)

where:

605

• ξ(t) is the trajectory,
• u(ξ(t)) is the vector field at the current position ξ(t),
• d

dtξ(t) is the first derivative (velocity) of the trajectory
at time t.

Notice that the functional is minimum (0) when the internal
product between the field and the derivative of the trajectory
is maximum (they are aligned) and maximum (2) when they
are colinear but point in different directions.

Our objective is to minimize the difference between the
trajectory’s velocity and the vector field at each point along
the path. So, for a waypoint parametrized trajectory we have:

Fvf[ξ, u] =

n+1∑
i=1

(
1−

d
dtξi · u(ξi)∥∥ d
dtξi

∥∥ ∥u(ξi)∥
)

. (15)

After dropping higher derivative terms, a good approxi-
mation of the gradient of this functional is computed as the
direction of the normalized vector field at each waypoint and
can be approximated as:

∇Fvf[ξ,u] ≈ −ui = −
u(ξi)

∥u(ξi)∥
, (16)

where:
• ui is the normalized vector at waypoint i,
• u(ξi) is the vector field at waypoint i,
• ∥u(ξi)∥ is the norm of the vector field at waypoint i.
This gradient deforms the trajectory in a way it follows

the direction specified by the vector field at each point.

IV. ANALYSIS

Our proposed methodology’s theoretical and practical lim-
itations are defined by several underlying assumptions. Stable
gradient computation and consistent global guidance depend
on the fundamental assumption that the vector field u(q) is
continuous over Q\Qs

obs. This continuity guarantees that the
robot’s motion has a smooth and consistent path due to the
vector field. Furthermore, we assume that the sensing modal-
ity is error-free within a local planning radius R, implying
that obstacles are detected instantly and that the conversion
to a binary occupancy grid is exact. Finally, the robot’s stable
velocity must be higher than the velocities of the dynamic
obstacles. These assumptions allow the approach to preserve
computational efficiency and give reliable motion planning
capabilities, even though they may be restrictive in real-world
situations.

Our method’s computational complexity is principally
determined by the signed distance field (SDF) computa-
tion, which scales as O(n3) for a 3-dimensional workspace
discretized at resolution n. The workspace discretization
introduces additional constraints, with a finer discretization
providing more accurate obstacle representation but increas-
ing computational overhead, whilst a coarser discretization
may overlook narrow passages or define artificial bound-
aries in the configuration space. The scaling behavior of
the computational complexity sets realistic restrictions on
the maximum planning radius and minimum discretization
resolution.

The performance of the optimization framework is the-
oretically limited by several factors. The convergence of
the optimization is critically dependent on the selection of
weights λ1, λ2, λ3 and step size η, resulting in a trade-off
between smoothness, obstacle avoidance, and vector field
adherence. Although the approach ensures that the trajectory
is locally optimal in terms of the defined functionals, it
cannot guarantee global optimality. This limitation arises
because the optimizer refines the trajectory locally, starting
from an initial path generated by the vector field, and may not
explore alternative paths that could be globally optimal. The
method’s performance is further bound by time constraints,
which require that the maximum number of optimization
iterations be limited to enable real-time operation and that
the computation time not exceed the planning horizon. More-
over, it is well known that local optimization methods are not
complete, which means that the resultant trajectory may no
be free of collisions, depending on the shape of the obstacles
and the number of optimization iterations.

V. SIMULATIONS

To evaluate our method, we implemented the methodology
of Pereira et al. [8] and our proposed methodology in
MATLAB on a computer with the following specifications:
Ubuntu 22.04.5 LTS operating system, Intel Core i7-10700
processor (16 threads @ 4.8 GHz), and 32 GB of RAM.
We ran two simulations, in different environments, with
both methods and compared their performances. The first
simulation environment was a 40m wide corridor with a
continuous vector field (similar to the one in used [8]). The
robot was tasked to navigate along a longitudinal line at a
distance d0 from the corridor center. This vector field can be
calculated as:

u(q) =

[
1

k(d0 − y)

]
, (17)

which assumes that the corridor is parallel to the world
coordinate frame’s x-axis. The speed at which the robot
approaches the line is determined by a positive gain, k.

In our simulation, k = 0.1, d0 = 5 and the planning
radius, R = 70m. The other parameters for Pereira et al. [8]
methodology are δ = 0.5m, a = 10, b = 9, η = 1m,
pr = 90% and θ = 60° and for our method, the parameters
are η = 0.01, ϵ = 2m, λ1 = 10, λ2 = 300, λ3 = 0.2. The
discretization resolution for the environment and the signed
distance field was 0.1m. Figure 3 shows a simulation of the
robot, with both methods, starting at an initial configuration
q0 = [−25,−15]T tasked with navigating in a corridor with
unmodeled obstacles. In the simulation, the robot computes
a trajectory from q0 to the border of the planning region,
follows the path, and before completing the trajectory, plans
a new trajectory starting from the last configuration of the
current trajectory.

In the second simulation, a UAV is tasked to patrol a
neighborhood by circulating a planar curve of the form x4+
y4 = c4, at a fixed height where c = 20m, while detecting
obstacles and avoiding no-fly zones with a planning radius of
12m. The parameters for Pereira et al. [8] methodology are

606

-40 -20 0 20 40 60 80 100 120 140 160

X(m)

-20

-15

-10

-5

0

5

10

15

20
Y

(m
)

RRT* Path

Optimization Path

Fig. 3. A simulation of a robot navigating in a corridor with obstacles. The vector field is shown with normalized blue arrows, the path calculated using
Pereira et al. [8] methodology is shown in red and our path is shown in green. The black circle shows the final configuration.

-30 -20 -10 0 10 20 30

X(m)

-30

-20

-10

0

10

20

30

Y
(m

)

RRT* Path

Optimization Path

Fig. 4. A simulation of a UAV patrolling a neighborhood by circulating
a planar curve with unmodeled obstacles. The vector field is shown
with normalized blue arrows, the path calculated using Pereira et al. [8]
methodology is shown in red and our path is shown in green. The black
circle shows the final configuration.

δ = 0.5m, a = 10, b = 9, η = 1m, pr = 90% and θ = 60°.
For our method, the parameters are η = 0.001, ϵ = 2m,
λ1 = 10, λ2 = 300, λ3 = 1. The discretization resolution
for the environment and the signed distance field was 0.1m.
Figure 4 shows a simulation of the UAV, using both methods,
starting from an initial configuration q0 = [−10, 25]T tasked
with patrolling a neighborhood along a planar curve at a fixed
height. The UAV computes a trajectory from q0 to the border
of the planning region, follows the path for one second then
computes a new trajectory from the current configuration to
the border of the new planning region centered around the
current configuration. During the flight, the UAV also takes
into account no-fly zones and adjusts its path accordingly.

Table I shows the comparison between the two methods for
both simulations for path length and computation time. Note

that the computation time reported in Table I for Simulation
2 corresponds to the cumulative time required to generate
all trajectories throughout the simulation. In practice, the
UAV performs local replanning within a 12 m radius at
one-second intervals, with each individual planning step
requiring significantly less time than the total trajectory time
reported in the table. The pre-processing time for our method
includes the time for generating the discretized binary grid
and the signed distance field. The method by Pereira et al.
[8] sometimes computes a slightly shorter path but it takes
a much longer time than our method. The path computed
by our method is smooth, avoids obstacles, and conforms
closely to the vector field guidance for most of the trajectory.

To further illustrate the behavior of our method in a
3D setting, we present a third simulation, as depicted in
Fig. 5. In this scenario, the UAV starts on the ground
and ascends while following a 3D vector field around the
super-ellipse curve until it reaches the desired height. The
optimized trajectory refines the UAV’s path, ensuring smooth
motion, obstacle avoidance, and adherence to the vector
field. For simplification, the obstacles in this environment
maintain the same 2D cross-section irrespective of height,
but the method can be extended to handle more complex 3D
obstacles. This visualization highlights the adaptability of our
approach in handling challenging environments, reinforcing
its effectiveness for real-world applications.

VI. CONCLUSION

In this work, we have proposed an integrated approach that
combines vector field-based motion planning with trajectory
optimization. Inspired by the work of Pereira et al. [8], which
explored integrating optimal sample-based motion planning
with vector fields, we extended the concept to optimize tra-
jectories for smoothness, obstacle avoidance, and vector field
adherence using a CHOMP-based approach. Our contribution
compared to CHOMP [11] has been to enable vector fields to
guide the path by including them in an optimization formula-
tion while ensuring that the trajectories are smooth, feasible,
and adaptive to dynamic environments. The results indi-
cated that the optimization-based method produced smooth
and obstacle-free paths that closely followed the original
vector field guidance, with higher computational efficiency

607

TABLE I
COMPARISON OF METHODOLOGIES FOR PATH LENGTH AND COMPUTATION TIME IN BOTH SIMULATIONS

Methodology Pre-processing Time (s) Path-finding Time (s) Total Time (s) Path Length (m)
Simulation 1: Robot in a Corridor

Pereira et al. [8] 0 281.4208 281.4208 138.4182
Our Method 80.5409 16.4052 96.9461 144.6308

Simulation 2: UAV Patrolling a Neighborhood
Pereira et al. [8] 0 442.5522 442.5522 167.7933
Our Method 22.6284 13.0947 35.7231 166.5466

Fig. 5. 3D simulation of the proposed method for UAV navigation. The
UAV follows a vector field that guides it towards a super-ellipse curve at
a fixed height. The vector field, shown in blue, dictates the direction of
movement but does not account for dynamic or unknown obstacles. The
optimized trajectory, shown in red, is generated through optimization to
ensure smoothness, obstacle avoidance, and adherence to the vector field.

compared to the framework to [8]. While the optimization-
based method generated slightly longer paths, it significantly
reduced computation times. Hybrid approaches that com-
bine the strengths of both sample-based and gradient-based
methods may enhance the versatility of the approach in
handling more complex scenarios. The scalability of this
framework to multi-robot systems could also be explored,
where coordination between robots might be optimized using
vector field guidance. A clear drawback of the approach is
the fact that CHOMP-based solutions are not complete and
may not return a feasible path. Future work could address
this issue by utilizing a global planner, such as RRT*, just
when such situations are detected.

REFERENCES

[1] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” The international journal of robotics research, vol. 5, no. 1,
pp. 90–98, 1986.

[2] B. Krogh, “A generalized potential field approach to obstacle avoid-
ance control,” in Proc. SME Conf. on Robotics Research: The Next
Five Years and Beyond, Bethlehem, PA, 1984, 1984, pp. 11–22.

[3] C. I. Connolly, J. B. Burns, and R. Weiss, “Path planning using
laplace’s equation,” in Proceedings., IEEE International Conference
on Robotics and Automation. IEEE, 1990, pp. 2102–2106.

[4] A. Shivam and A. Ratnoo, “Arcsine vector field for path following
guidance,” Journal of Guidance, Control, and Dynamics, vol. 46,
no. 12, pp. 2409–2420, 2023.

[5] V. M. Goncalves, L. C. Pimenta, C. A. Maia, B. C. Dutra, and G. A.
Pereira, “Vector fields for robot navigation along time-varying curves
in n-dimensions,” IEEE Transactions on Robotics, vol. 26, no. 4, pp.
647–659, 2010.

[6] A. M. Rezende, V. M. Goncalves, and L. C. Pimenta, “Constructive
time-varying vector fields for robot navigation,” IEEE Transactions on
Robotics, vol. 38, no. 2, pp. 852–867, 2021.

[7] A. H. Nunes, A. M. Rezende, G. P. Cruz, G. M. Freitas, V. M.
Gonçalves, and L. C. Pimenta, “Vector field for curve tracking with
obstacle avoidance,” in 2022 IEEE 61st Conference on Decision and
Control (CDC). IEEE, 2022, pp. 2031–2038.

[8] G. A. Pereira, S. Choudhury, and S. Scherer, “A framework for optimal
repairing of vector field-based motion plans,” in 2016 International
Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2016,
pp. 261–266.

[9] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research,
vol. 30, no. 7, pp. 846–894, 2011.

[10] G. A. Pereira, S. Choudhury, and S. Scherer, “Nonholonomic motion
planning in partially unknown environments using vector fields and
optimal planners,” in XXI Congresso Brasileiro de Automática, 2016.

[11] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “Chomp: Covariant
hamiltonian optimization for motion planning,” The International
journal of robotics research, vol. 32, no. 9-10, pp. 1164–1193, 2013.

[12] S. Liu and P. Liu, “Robot motion planning benchmarking and op-
timization through motion planning pipeline,” in 2021 IEEE 17th
International Conference on Automation Science and Engineering
(CASE). IEEE, 2021, pp. 633–638.

[13] J. Men and J. R. Carrión, “A generalization of the chomp algorithm
for uav collision-free trajectory generation in unknown dynamic envi-
ronments,” in 2020 IEEE International Symposium on Safety, Security,
and Rescue Robotics (SSRR). IEEE, 2020, pp. 96–101.

[14] R. Bonatti, C. Ho, W. Wang, S. Choudhury, and S. Scherer, “Towards
a robust aerial cinematography platform: Localizing and tracking
moving targets in unstructured environments,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2019, pp. 229–236.

[15] W. Yao, H. G. de Marina, B. Lin, and M. Cao, “Singularity-free
guiding vector field for robot navigation,” IEEE Transactions on
Robotics, vol. 37, no. 4, pp. 1206–1221, 2021.

[16] S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning
and control,” in [1993] Proceedings IEEE International Conference
on Robotics and Automation. IEEE, 1993, pp. 802–807.

[17] M. Faroni, N. Pedrocchi, M. Beschi et al., “Adaptive hybrid local–
global sampling for fast informed sampling-based optimal path plan-
ning,” Autonomous Robots, vol. 48, no. 2–3, 2024.

[18] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

608

